95&‘ 2 s Systems Software & Architecture Laborat
%’:_ ,\% A-I = |:|-| gt u ystems Software rchitecture Laboratory

SEOUL NATIONAL UNIVERSITY Dept. of Computer Science and Engineering

4190.308: Computer Architecture (Fall 2018)
Project #2: TinyFP (8-bit floating point) Representation

Due: October 28th (Sunday), 11:59PM

1. Introduction

The purpose of this project is to get familiar with the floating-point representation by

implementing a simplified 8-bit floating-point representation.

2. Problem specification
2.1 Overview

tinyfp is a simplified 8-bit floating point representation which follows the IEEE 754
standard for floating-point arithmetic. The overall structure of the tinyfp representation
is shown below. The MSB (Most Significant Bit) is used as a sign bit (s). The next four bits
are used for exponents (exp) with a bias value of 7. The last three bits are used for the

fractional part (frac).

s exp frac

In C, the new type tinyfp is defined as follows.

typedef unsigned char tinyfp;

Your task is to implement the following four C functions that convert int or float type

values to the tinyfp format and vice versa.

tinyfp int2tinyfp(int x);
int tinyfp2int(tinyfp x);
tinyfp float2tinyfp(float x);
float tinyfp2float(tinyfp x);




A.I % EH i‘- m Systems Software & Architecture Laboratory

SEOUL NATIONAL UNIVERSITY Dept. of Computer Science and Engineering

2.2 Implementation details

2.2.1.

2.2.

2.2.3.

2.2.4.

N

int2tinyfp()
Integer zero (0) should be converted to plus zero (+0.0) in tinyfp.

An integer value that exceeds the range of the tinyfp representation should be

converted to the infinity in tinyfp (+oo or -co depending on the sign).

If necessary, use the round-to-even mode.

tinyfp2int()

Drop the fractional part when you convert values in the tinyfp format to integers.

(e.g., the value 1.5 in tinyfp is converted to 1)

Convert +c0 and -0 in tinyfp to TMin in integer. (TMin represents the smallest

integer that can be represented in the 32-bit signed integer format.)
+NaN and -NaN in tinyfp are also converted to TMin in integer.
float2tinyfp()

A floating-point value that exceeds the range of the tinyfp representation should

be converted to the infinity in tinyfp (+oo or -co depending on the sign).

+NaN and -NaN in float should be converted to the corresponding +NaN and -

NaN in tinyfp, respectively.

+00 and -co in float should be converted to the corresponding +co and - in

tinyfp, respectively.

If necessary, use the round-to-even mode.

tinyfp2float()

The tinyfp type is a subset of the float type. Hence, all the values in tinyfp can

be represented in the float format without any error.

+NaN and -NaN in tinyfp should be converted to the corresponding +NaN and
-NaN in float, respectively.

+00 and -oo in tinyfp should be converted to the corresponding +co and - in



A.I % EH §|- m Systems Software & Architecture Laboratory

SEOQUL NATIONAL UNIVERSITY

Dept. of Computer Science and Engineering

float, respectively.

- +0and -0in tinyfp should be converted to the corresponding +0 and -0 in float,

respectively.

3. Example

The skeleton code will be available in the course homepage at http://csl.snu.ac.kr. A
simple test code for this project is available in the “pa2-test.c” file. Some sample runs

look like this:

Makefile
$ make
gcc -g -02 -Wall
gcc -g -02 -Wall
gcc -g -02 -Wall
$ ./pa2-test

pa2.c pa2.h pa2-test.c
-C
-C
-0

pa2-test.c -o pa2-test.o
pa2.c -0 pa2.o
pa2-test pa2-test.o pa2.o

Test 1: casting from int to tinyfp

int (00000000 POOOPOOO ©OPPOELE POPPRRR1) =>
int(11111211 11111111 11111111 11101180) =>
int(ec000000 PPOOPEOO ©POEPEEe ©1000011) =>
int (00000000 POOEPEOO ©PPPPERe 10010101) =>
int (eeoeee00 eEOEPEEO EEPEPEEe 111leee1l) =>
int(11111211 11111111 11111111 eeeeelee) =>

WRONG
WRONG
WRONG
WRONG
WRONG
WRONG

tinyfp(00000010),
tinyfp(0eeeee1e),
tinyfp(0eeeee1e),
tinyfp(00000010),
tinyfp(0eeeee1e),
tinyfp(0eeeee1e),

Test 2: casting from tinyfp to int

tinyfp(leeee000) =>
tinyfp(00011110) =>
tinyfp(11101010) =>
tinyfp(e1el1e101) =>
tinyfp(@1111600) =>
tinyfp(01111111) =>

int(eoe0e000
int(eeeeeeee
int(oeeeoeeee
int(eoe00000
int(eeeeeeee
int(eeeeeeee

eceeeeee
eoeeeeee
eoeeeeee
eceeeeee
eoeeeeee
eoeeeeee

eeeeeeee
eeeeeeee
eeeeeeee
eeeeeeee
eeeeeeee
eeeeeeee

00000010),
eeeeee1e),
©00e0010),
00000010),
eeeeee1e),
eeeeeele),

WRONG
WRONG
WRONG
WRONG
WRONG
WRONG

Test 3: casting from float to tinyfp

float(ee111011 ©eePEELE PEEREEREe eeeeeees) =>
float(©0111010 ©1000000 ©POOLEEO ©00OPEE0) =>
float (11000001 91000101 1e000101 0e011111) =>
float(©e111111 11011006 ©eeeeeee eeeeeees) =>
float (11111111 11000000 ©POELEEO ©000PEE0) =>
float(@1000011 16011101 ©EEECEEE ©EPLREEe) =>

tinyfp (0eeeee1e),
tinyfp(0eeeee1e),
tinyfp(0eeeee1e),
tinyfp (0eeeee1e),
tinyfp(0eeeee1e),
tinyfp(eeeeee1e),

WRONG
WRONG
WRONG
WRONG
WRONG
WRONG

Test 4: casting from tinyfp to float
tinyfp(00e00010) => float (91000000 00000000
tinyfp(00010000) => float (01000000 ©OEEEEEO
tinyfp(11101010) => float (01000000 00000000
tinyfp(10000000) => float (91000000 00000000
tinyfp(01111000) => float (01000000 00000000
tinyfp(11111100) => float (01000000 00000000
$

eceeeeee
eceeeeee
eceeoeeee
eceeeeee
eceeoeeee
eceeoeeee

00000000) ,
©eeeeeee),
00000000) ,
00000000) ,
00000000) ,
00000000) ,

WRONG
WRONG
WRONG
WRONG
WRONG
WRONG




95&‘ Q 5 Systems Software & Architecture Laborat
& ,\% A-I = |:|-| gt m ystems Software rchitecture Laboratory

LR SEOUL NATIONAL UNIVERSITY Dept. of Computer Science and Engineering

4. Restrictions

- You should use only the following type variables: tinyfp, float, and (singed or

unsigned) char / short / int.

- Do not use any array inside int2tinyfp(), tinyfp2int(), float2tinyfp(), and

tinyfp2float() functions.

5. Hand in instructions
—  Submit only the pa2.c file to the submission server.

—  The total number of submissions will be limited to 20 times. Please debug your

code fully before you upload your solution to the server.

— In addition to normal test cases for checking the correctness, we will also measure
the time to perform a number of float2tinyfp() calls. Among the correct

implementations, top 5 fastest solutions will get the 10% bonus.

6. Logistics
—  You will work on this project alone.

—  Only the upload submitted before the deadline will receive the full credit. 25% of
the credit will be deducted for every single day delay.

B You can use up to 5 slip days during this semester. Please let us know the

number of slip days you want to use after each submission.

— Any attempt to copy others’ work will result in heavy penalty (for both the copier

and the originator). Don't take a risk.



SEOUL NATIONAL UNIVERSITY

@Métuﬂm

Good luck!

Jin-Soo Kim
Systems Software Laboratory
Dept. of Computer Science and Engineering

Seoul National University

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering



