

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

4190.308: Computer Architecture (Fall 2018)

Project #2: TinyFP (8-bit floating point) Representation

Due: October 28th (Sunday), 11:59PM

1. Introduction

The purpose of this project is to get familiar with the floating-point representation by

implementing a simplified 8-bit floating-point representation.

2. Problem specification

2.1 Overview

tinyfp is a simplified 8-bit floating point representation which follows the IEEE 754

standard for floating-point arithmetic. The overall structure of the tinyfp representation

is shown below. The MSB (Most Significant Bit) is used as a sign bit (s). The next four bits

are used for exponents (exp) with a bias value of 7. The last three bits are used for the

fractional part (frac).

In C, the new type tinyfp is defined as follows.

Your task is to implement the following four C functions that convert int or float type

values to the tinyfp format and vice versa.

typedef unsigned char tinyfp;

tinyfp int2tinyfp(int x);

int tinyfp2int(tinyfp x);

tinyfp float2tinyfp(float x);

float tinyfp2float(tinyfp x);

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

2.2 Implementation details

2.2.1. int2tinyfp()

- Integer zero (0) should be converted to plus zero (+0.0) in tinyfp.

- An integer value that exceeds the range of the tinyfp representation should be

converted to the infinity in tinyfp (+∞ or -∞ depending on the sign).

- If necessary, use the round-to-even mode.

2.2.2. tinyfp2int()

- Drop the fractional part when you convert values in the tinyfp format to integers.

(e.g., the value 1.5 in tinyfp is converted to 1)

- Convert +∞ and -∞ in tinyfp to TMin in integer. (TMin represents the smallest

integer that can be represented in the 32-bit signed integer format.)

- +NaN and -NaN in tinyfp are also converted to TMin in integer.

2.2.3. float2tinyfp()

- A floating-point value that exceeds the range of the tinyfp representation should

be converted to the infinity in tinyfp (+∞ or -∞ depending on the sign).

- +NaN and -NaN in float should be converted to the corresponding +NaN and -

NaN in tinyfp, respectively.

- +∞ and -∞ in float should be converted to the corresponding +∞ and -∞ in

tinyfp, respectively.

- If necessary, use the round-to-even mode.

2.2.4. tinyfp2float()

- The tinyfp type is a subset of the float type. Hence, all the values in tinyfp can

be represented in the float format without any error.

- +NaN and -NaN in tinyfp should be converted to the corresponding +NaN and

-NaN in float, respectively.

- +∞ and -∞ in tinyfp should be converted to the corresponding +∞ and -∞ in

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

float, respectively.

- +0 and -0 in tinyfp should be converted to the corresponding +0 and -0 in float,

respectively.

3. Example

The skeleton code will be available in the course homepage at http://csl.snu.ac.kr. A

simple test code for this project is available in the “pa2-test.c” file. Some sample runs

look like this:

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

4. Restrictions

- You should use only the following type variables: tinyfp, float, and (singed or

unsigned) char / short / int.

- Do not use any array inside int2tinyfp(), tinyfp2int(), float2tinyfp(), and

tinyfp2float() functions.

5. Hand in instructions

– Submit only the pa2.c file to the submission server.

– The total number of submissions will be limited to 20 times. Please debug your

code fully before you upload your solution to the server.

– In addition to normal test cases for checking the correctness, we will also measure

the time to perform a number of float2tinyfp() calls. Among the correct

implementations, top 5 fastest solutions will get the 10% bonus.

6. Logistics

– You will work on this project alone.

– Only the upload submitted before the deadline will receive the full credit. 25% of

the credit will be deducted for every single day delay.

◼ You can use up to 5 slip days during this semester. Please let us know the

number of slip days you want to use after each submission.

– Any attempt to copy others’ work will result in heavy penalty (for both the copier

and the originator). Don’t take a risk.

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

Good luck!

Jin-Soo Kim

Systems Software Laboratory

Dept. of Computer Science and Engineering

Seoul National University

