95&‘ 2 s Systems Software & Architecture Laborat
%’:_ ,\% A-I = |:|-| gt u ystems Software rchitecture Laboratory

SEOUL NATIONAL UNIVERSITY Dept. of Computer Science and Engineering

4190.308: Computer Architecture (Fall 2018)
Project #1: 64-bit Arithmetic using 32-bit Integers

Due: September 30th (Sunday), 11:59PM

1. Introduction

The purpose of this project is to become more familiar with the binary representation of integers
and to understand what happens during the arithmetic operations between two integers.

2. Problem specification

2.1 Overview

Write three C functions named Uadd64(), Usub64(), and Umul64() which receive two 64-bit
integers and compute the addition, subtraction, and multiplication of those integers, respectively.

Note that we use two 32-bit integers to represent a 64-bit integer. The prototype of each function

is as follows:
typedef unsigned int u32;
typedef struct { HL64 Uadd64 (HL64 a, HL64 b);
u32 hi; HL64 Usub64 (HL64 a, HL64 b);
u32 lo; HL64 Umulé4 (HL64 a, HL64 b);
} HL64;

The HL64 type is the alias of a structure which holds high 32bits and low 32bits of a single 64-bit
integer. Two arguments, a and b, represent the operands. The return value should store upper 32bits

and lower 32bits of the result separately. The u32 type is the alias of unsigned int type.

2.2 Restrictions

¢ You should use only (signed or unsigned) int- and HL64-type variables.

* You are allowed to use only integer arithmetic and logical operations inside Uaddé4(),

Usub64, and Umulé4() functions.

¢ Do not use any array inside Uadd64(), Usub64, and Umul64() functions.

SEOUL NATIONAL UNIVERSITY Dept. of Computer Science and Engineering

g«‘) 5 Systems Software & Architecture Laborat
: ,\% A-I = EH q m ystems Software rchitecture Laboratory
3

2.3 Verification of your result

Since the “unsigned long long (u64)" type represents unsigned 64-bit integers, another way to
verify your result is to perform the same computation using this type of variables. In the pal.h file,
we provide two macros called U64_TO_HL64(u,x) and HL64_TO_U64(x,u), which convert a “u64"-
type variable to and from the corresponding "HL64"-type variable, respectively. Using these macros,
you can check whether your computation result is correct or not as shown in the following example.

For the given u64-type variables u and v, the result of Real_Uadd64(u, v) should be identical to

that of HL_Uadd64(u, v).

(u32) ((u64) (u) >> 32), \
(u32) ((u64) (u) & BxFFffffff)

#define U64_TO HL64(u,x) (x).hi
(x).1lo

#tdefine HL64_TO_U64(x,u) (u) = (((u6d) (x).hi << 32) | (u64) x.1lo)

u64 Real Uaddé64 (u64 u, u6bd v)
{

return u + v;

u64 HL_Uadd64 (u64 u, u6d v)

{
HL64 a, b, Xx;

u6d result;

U64_TO_HL64 (u, a);

U64_TO_HL64 (v, b);

x = Uadd64 (a, b); // Your implementation
HL64 TO U64 (x, result);

return result;

) o P .
; A-I = EH 2‘- m| Systems Software & Architecture Laboratory

SEOUL NATIONAL UNIVERSITY Dept. of Computer Science and Engineering

3. Example
The test code of this project is available in the "pal-test.c” file.

Some sample runs:

gcc -g -02 -Wall -c pal-test.c -o pal-test.o
gcc -g -02 -Wall -c pal.c -o pal.o
gcc -g -02 -Wall -o pal-test pal-test.o pal.o

©x45777b23e63c9869,
8x946a5558ef8e1f29,
ox41f3b7lefbe2a%e3,
©x085dbl127fal6231b,
Unsigned subtraction:
0xef7752255a9cf92e,
exc4eb6807debafth66,
©xba7d83e47d7130a3,
0xb1771da33743a858,
Unsigned multiplication:
©xbdfb838cf353decd,
0x247caB861936c4ee,
oxf57d3dbd7f7b8ddc,
exc87f4afd4el9ac241,

©x4877b0dc59495cff,
ex7cfdib58fa7ed7ab,
@xel575fe@7fdes2c2,
oxe9f990cde7ef438d,

0x8def2c@03f85f568, result = @x0@0000EE0000E00E WRONG
©x116770bleadcf6d4, result = Bx0000000000008000 WRONG
0x234b161f7bb30@ca5, result = @x0@0000EE0000E00E WRONG
0xf25741f5e20566a8, result = ©x000000000000EEE WRONG

0x0000000000000000 WRONG
©xeeeoeee0e0eeee0e WRONG
0x0000000000000000 WRONG
©xeeeoeee0e0eeee0e WRONG

Ox727fdcc23befd79f,
ex5d739b5e4f1bd7b7,
©xd95b6c61678c895d,
ex5aef63847fa2a8d4,

Bx9cf775631ead218f, result
ex6777ccb78f4f23af, result
0xel22178315e4a746, result
8x5687baleb7a8ff84, result

Oxe@de9a76dfed49eb4,
ex1dba95f87¢138641,
oxfea7221a7516dde9,
exf8e58badfde72367,

B0xc78bc74f5b615624, result = @x0@00000000000000 WRONG
0x4f5d74d666911b8e, result = 8x0000000000008000 WRONG
0x9cbdd5526dd3093c, result = @x0@e00eee00000000 WRONG
Bx7cfe67al7a%9a@b27, result = Bx0000000000008000 WRONG

u
u
u
u
$

4. Required setups for this and future project assignments
4.1 Installing Linux
Your C code should work after compiling it with gcc (GNU C Compiler) on Linux.

The official Linux platform in this course is Ubuntu 18.04.1 LTS which can be downloaded from

https://www.ubuntu.com. You can install Ubuntu on the Windows machine by using virtualization

products such as Oracle VirtualBox (https://www.virtualbox.org) or VMware Workstation Player

(https://www.vmware.com). For further details, please google them.

4.2 Creating an account in the submission server

Register your account in the submission server https://sys.snu.ac.kr. You must enter your real name

& student ID (20XX-YYYYY format). You can see the project page after we approve your account.

4.3 Sending an email for remote access

Currently, the submission server is configured to be accessible only from SNU Campus network
(147.46.** and 147.47.** |IP addresses). If you want to submit your code outside of the campus,
please let me know your IP address by sending an email to jinsoo.kim@snu.ac.kr. This should be

done at least 24 hours before your submission! (Use http://ip-address.us to get your IP address)

https://www.ubuntu.com/
https://www.virtualbox.org/
https://www.vmware.com/
https://sys.snu.ac.kr/
http://ip-address.us/

A_I % EH §|- m Systems Software & Architecture Laboratory

SEOUL NATIONAL UNIVERSITY Dept. of Computer Science and Engineering

[SNU Systems Software = X

< C' | & Secure | https://sys.snu.ackr B W :

tems Software & Architecture Lab.

Login
Email

Password

We recommend the Google Chrome web browser.

® SNU Systems Software & Architecture Laboratory

[SNU Systems Software ¢ X

& C' | & Secure | https://sys.snu.ac.kr/join.php W :

Email

Password

Password Confirm

Name

NickMame

Student No.

Mobile 010 |- -

We recommend the Google Chrome web browser.

© SNU Systems Software & Architecture Laboratory

A.I % EH §|- m Systems Software & Architecture Laboratory

SEOUL NATIONAL UNIVERSITY Dept. of Computer Science and Engineering

[SNU Systems Software = X

& > C | @ Secure | https//sys.snuackr/main.php o Yy

[4190.308] Computer
Computer Architecture

m This course introduces the main components of a modern computer

Projects system including the instruction set, the processor, and the memory
Rank

hierarchy. We cover techniques such as pipelining, caching, and
Latest Runs

QnA

Course Homepage

virtual memory. In addition, this course gives a historical
perspective on the evolution of computer systems and an overview

of performance evaluation methodologies.

Goto Homepage »
Test Queue Status

Member Info

Logout

5. Hand in instructions

e Submit only the pal.c file to the submission server.

6. Logistics
* You will work on this project alone.

* Only the upload submitted before the deadline will receive the full credit. 25% of
the credit will be deducted for every single day delay.

* You can use up to 5 sljp days during this semester. Please let us know the number

of slip days you want to use after each submission.

* Any attempt to copy others’ work will result in heavy penalty (for both the copier

and the originator). Don't take a risk.

SEOUL NATIONAL UNIVERSITY

@Métuﬂm

Good luck!

Jin-Soo Kim
Systems Software & Architecture Laboratory
Dept. of Computer Science and Engineering

Seoul National University

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

