
4190.308:

Computer Architecture

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2018

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Schedule

• 9:30 – 10:45 (Tuesday & Thursday)

• Lecture room: Engineering Bldg. #301-203

• 3 credits

• Official language: English

▪ TA: Joo-Won Lee (x7296)

▪ SNU eTL system for announcements and lecture slides

▪ Automatic grading server (sys.snu.ac.kr) for project assignments,

submissions, and scores

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Jin-Soo Kim (김진수)

• Professor @ CSE Dept.

• Systems Software & Architecture Laboratory

• Operating systems, storage systems, parallel and distributed computing, embedded

systems, …

▪ E-mail: jinsoo.kim@snu.ac.kr

▪ Tel: 02-880-7302

▪ Office: Engineering Bldg. #301-520 (office hours: Tuesday & Thursday)

▪ The best way to contact me is by email

mailto:jinsoo.kim@snu.ac.kr

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Prerequisites

• Programming Practice (4190.103A) – C programming

• Logic Design (M1522.000700) – Must!

• Data Structure (M1522.000900) – Recommended

▪ You should be familiar with the followings:

• Shells and basic Linux commands

• C programming & debugging skills (on Linux)

• Basic knowledge on digital circuits and systems

▪ Accessible x86-64/Linux (Ubuntu 18.04.1 LTS or similar) machine

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Your course registration form (“초안지“) will be accepted only if …

• You have an experience on C programming and debugging on Linux (gcc/gdb) and

• You have taken the “Logic Design” course previously

▪ Other introductory CSE courses for non-major students:

• M1522.000600 Computer Programming

• M1522.000700 Logic Design

• M1522.000900 Data structures

• 4190.101 Discrete Mathematics

• 4190.103 Programming Practice

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Omer Tower @ Tel Aviv, Israel

• In memory of Omer Sayag, an 8-year-old boy

who was a Lego enthusiast and died of cancer

in 2014

• Completed in Dec. 2017

▪ 118ft (~ 36m)

▪ > 500,000 Lego bricks

Source: http:// www.dailymail.co.uk/news/article-5215235/Tel-Aviv-toy-towers-world-record.html

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7
Source: https://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ By Gordon Moore @ Intel (1965)

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9
Source: David Keyes, “Algorithmic Adaptations to Extreme Scale Computing,” ATPESC, 2018.

104 cabinets
(76 computes,
8 switches,
20 disks)

9298 cores

150m2

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Source: http:// www.dailymail.co.uk/news/article-5215235/Tel-Aviv-toy-towers-world-record.html
http://opanoticias.com/noticias/construyen-en-israel-la-torre-de-lego-mas-grande-del-mundo-36-metros-de-altura/

https://www.mirror.co.uk/news/uk-news/worlds-tallest-lego-tower-built-11763183

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Levels of abstractions

Operating system

Architecture

Programming languages & compilers

Data structures & algorithms

Application programs

Microarchitecture

Hardware description languages

Digital logic

VLSI layout

Processing, Fabrication

Chemistry, Physics

Software

Hardware

Interface between
software and hardware

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ The hardware/software interface

• Hardware abstraction visible to software (OS, compilers, …)

• Instructions and their encodings, registers, data types, addressing modes, etc.

• Written documents about how the CPU behaves

• e.g. All 64-bit Intel CPUs follow the same x86-64 (or Intel 64) ISA

x86-64 ISA

Operating system

Compilers

...

Black box

Software
Developers

x86-64 ISA

Black box

Microarchitecture

…

Hardware
Developers

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ C code: add two signed integers

▪ Assembly code

• Add two 8-byte integers

– “quad” words in x86-64 parlance

– Same instruction whether signed or unsigned

• Operands
– x: Register %rdi

– y: Register %rsi

– t: Register %rax

▪ Machine code

• 4-byte instruction

• Stored at memory address 0x4004d6

long t = x + y;

leaq (%rdi,%rsi),%rax

0x4004d6: 48 8d 04 37

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Abstraction helps us deal with complexity

• Hide lower-level details

▪ These abstractions have limits

• Especially in the presence of bugs

• Need to understand details of underlying implementations

▪ This is why you should take this course seriously even if you don’t want

to be a computer architect!

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Is x2 ≥ 0?

• Float’s: ??

• Int’s: ??

▪ Is (x + y) + z == x + (y + z)?

• Unsigned & Signed Int’s: ??

• Float’s: ??
float x = 1e20, y = -1e20, z = 3.14;
printf (“%s\n”, (x+y)+z==x+(y+z)? “Yes” : “No”);

int x = 50000;
printf (“%s\n”, (x*x >= 0)? “Yes” : “No”);

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Memory referencing bug example

$./bufdemo
Type:012
012

$./bufdemo
Type: 01234567890123456789012
01234567890123456789012

$./bufdemo
Type: 012345678901234567890123
Segmentation fault (core dumped)

/* Echo Line */
void echo()
{

// Way too small!
char buf[4];
gets(buf);
puts(buf);

}

int main()
{

printf(“Type: “);
echo();
return 0;

}

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ There’s more to performance than asymptotic complexity

▪ Array copy example

void copyij (int src[2048][2048],
int dst[2048][2048])

{
int i, j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];
}

void copyji (int src[2048][2048],
int dst[2048][2048])

{
int i, j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];
}

4.3 ms 81.8 ms

copyji() is 20x slower on 2.0GHz Intel Core i7 Haswell. Why?

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Computers do more than execute programs

▪ They need to get data in and out

• I/O system critical to program reliability and performance

▪ Many system-level issues arise in presence of I/O

• Concurrent operations by autonomous processes

• Coping with unreliable media

• Cross platform compatibility

• Complex performance issues

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Chances are, you’ll never write programs in assembly

▪ But: Understanding assembly is key to machine-level execution model

▪ Behavior of programs in presence of bugs

• High-level language models break down

▪ Tuning program performance

• Understand optimizations done / not done by the compiler

• Understanding sources of program inefficiency

▪ Implementing systems software (e.g. Compiler, OS, Boot loader, …)

▪ Creating / fighting malware

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ You will understand what each block does by the end of this term!

▪ You will also learn how to program the CPU and write efficient code

AMD Barcelona: 4 processor cores

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Multi-coreRISC Technology
End of
Moore’s law?

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ How programs are translated into the machine language

• And how the hardware executes them

▪ The hardware/software interface – Instruction Set Architecture (ISA)

▪ What determines program performance

▪ How hardware designers / software developers improve performance

▪ What is parallel processing

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ To graduate!

▪ To design the next great instruction set? Well…

• ISA has largely converged, especially in desktop / server / laptop / mobile space

• Dictated by powerful market forces (Intel/ARM)

▪ To get a job in Intel, NVIDIA, ARM, Apple, Qualcomm, Google, …

• Tremendous organizational innovations relative to established ISA abstractions

▪ Design, analysis, and implementation concepts that you’ll learn are vital

to all aspects of computer science and engineering

▪ This course will equip you with an intellectual toolbox for dealing with a

host of systems design challenges

▪ And finally, just for fun!
Partially borrowed from David Culler’s CS252 lecture slides

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Computer Systems:

A Programmer’s Perspective

• Randal E. Bryant and David R. O’Hallaron

• Third Edition

• Pearson Education Limited, 2016

• http://csapp.cs.cmu.edu

http://csapp.cs.cmu.edu/

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ Computer Organization and Design:

The Hardware/Software Interface

(MIPS Edition)

• David A. Patterson and John L. Hennessy

(Turing Award Recipients in 2017)

• Fifth Edition

• Morgan Kaufmann, 2013

• http://booksite.elsevier.com/9780124077263/

http://booksite.elsevier.com/9780124077263/

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Computer Architecture:

A Quantitative Approach

• John L. Hennessy and David A. Patterson

• Sixth Edition

• Morgan Kaufmann, 2017

• http://booksite.elsevier.com/9780128119051

http://booksite.elsevier.com/9780128119051

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Intel 64 and IA-32 Architectures

Software Developer’s Manual

• Volume 1: Basic Architecture

• Volume 2: Instruction Set Reference

• Volume 3: System Programming Guide

• https://software.intel.com/en-us/articles/intel-sdm

https://software.intel.com/en-us/articles/intel-sdm

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ x86-64 Assembly Language Programming

with Ubuntu

• Ed Jorgensen

• Version 1.1.13

• September 2018

• http://www.egr.unlv.edu/~ed/x86

http://www.egr.unlv.edu/~ed/x86

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Introduction to Computer Architecture

▪ Integers and Floating Points

▪ x86-64 Instruction Set Architecture

▪ Sequential Architecture

▪ Pipelined Architecture

▪ Cache

▪ Virtual memory

▪ I/O and Storage

▪ Parallel Computer Architecture

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ C programming

▪ x86-64 assembly programming

▪ y86-64 assembly programming

• y86-64 is a simplified instruction set used in this course based on Intel x86-64

architecture

▪ Enhancing y86-64 processor simulator

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

▪ Exams: 60%

• Midterm: 25%

• Final: 35%

▪ Projects: 40%

▪ University policy requires students to attend at least 2/3 of the

scheduled classes. Otherwise, you’ll fail this course.

▪ Also, if you miss one of the exams, you’ll fail this course.

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

▪ What is cheating?

• Copying another student’s solution (or one from the Internet) and submitting it as

your own

• Allowing another student to copy your solution

▪ What is NOT cheating?

• Helping others use systems or tools

• Helping others with high-level design issues

• Helping others debug their code

▪ Penalty for cheating

• Severe penalty on the grade (F) and report to dept. chair

• Ask helps to your TA or instructor if you experience any difficulty!

4190.308: Computer Architecture | Fall 2018 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

▪ Modern Computer Architecture is about managing and optimizing across

several levels of abstraction w.r.t. dramatically changing technology and

application load

▪ This course focuses on

• x86-64 Instruction Set Architecture (ISA) – what interface is supported in Intel CPUs?

• An implementation based on Pipelining (Microarchitecture) – how to make it faster?

▪ Understanding Computer Architecture is vital to other “systems” courses:

• Operating systems, Compilers, Programming languages, Embedded systems, Storage

systems, Computer networks, Parallel processing, Distributed systems, etc.

