
xv6: a simple, Unix-like teaching operating system

Russ Cox Frans Kaashoek Robert Morris

September 2, 2025

2

Contents

1 Operating system interfaces 9
1.1 Processes and memory . 10
1.2 I/O and File descriptors . 13
1.3 Pipes . 16
1.4 File system . 17
1.5 Real world . 19
1.6 Exercises . 19

2 Operating system organization 21
2.1 Abstracting physical resources . 22
2.2 User mode, supervisor mode, and system calls . 22
2.3 Kernel organization . 23
2.4 Code: xv6 organization . 25
2.5 Process overview . 26
2.6 Code: starting xv6, the first process and system call 28
2.7 Security Model . 28
2.8 Real world . 29
2.9 Exercises . 29

3 Page tables 31
3.1 Paging hardware . 31
3.2 Kernel address space . 34
3.3 Code: creating an address space . 36
3.4 Physical memory allocation . 37
3.5 Code: Physical memory allocator . 37
3.6 Process address space . 38
3.7 Code: exec . 39
3.8 Real world . 41
3.9 Exercises . 42

4 Traps and system calls 43
4.1 RISC-V trap machinery . 44
4.2 Traps from user space . 45

3

4.3 Code: Calling system calls . 47
4.4 Code: System call arguments . 48
4.5 Traps from kernel space . 48
4.6 Real world . 49
4.7 Exercises . 49

5 Page faults 51
5.1 Lazy allocation . 51
5.2 Code . 52
5.3 Real world: Copy-On-Write (COW) fork . 53
5.4 Real world: Demand paging . 53
5.5 Real world: Memory-mapped files . 54
5.6 Exercises . 54

6 Interrupts and device drivers 57
6.1 Code: Console input . 57
6.2 Code: Console output . 58
6.3 Concurrency in drivers . 59
6.4 Timer interrupts . 59
6.5 Real world . 60
6.6 Exercises . 61

7 Locking 63
7.1 Races . 64
7.2 Code: Locks . 66
7.3 Code: Using locks . 68
7.4 Deadlock and lock ordering . 69
7.5 Locks and interrupts . 70
7.6 Instruction and memory ordering . 71
7.7 Sleep locks . 72
7.8 Real world . 72
7.9 Exercises . 73

8 Scheduling 75
8.1 Multiplexing . 75
8.2 Context switch overview . 75
8.3 Code: Context switching . 76
8.4 Code: Scheduling . 77
8.5 Code: mycpu and myproc . 79
8.6 Real world . 79
8.7 Exercises . 80

4

9 Sleep and Wakeup 81
9.1 Overview . 81
9.2 Code: Sleep and wakeup . 83
9.3 Code: Pipes . 84
9.4 Code: Wait, exit, and kill . 85
9.5 Process Locking . 86
9.6 Real world . 87
9.7 Exercises . 88

10 File system 89
10.1 Overview . 89
10.2 Buffer cache layer . 91
10.3 Code: Buffer cache . 91
10.4 Logging layer . 92
10.5 Log design . 93
10.6 Code: logging . 94
10.7 Code: Block allocator . 95
10.8 Inode layer . 95
10.9 Code: Inodes . 97
10.10Code: Inode content . 98
10.11Code: directory layer . 99
10.12Code: Path names . 100
10.13File descriptor layer . 101
10.14Code: System calls . 102
10.15Real world . 103
10.16Exercises . 104

11 Concurrency revisited 105
11.1 Locking patterns . 105
11.2 Lock-like patterns . 106
11.3 No locks at all . 107
11.4 Parallelism . 107
11.5 Exercises . 108

12 Summary 109

5

6

Foreword and acknowledgments

This is a draft text intended for a class on operating systems. It explains the main concepts of
operating systems by studying an example kernel, named xv6. Xv6 is modeled on Dennis Ritchie’s
and Ken Thompson’s Unix Version 6 (v6) [17]. Xv6 loosely follows the structure and style of v6,
but is implemented in ANSI C [7] for a multi-core RISC-V [15].

This text should be read along with the source code for xv6, an approach inspired by John Li-
ons’ Commentary on UNIX 6th Edition [11]; the text has hyperlinks to the source code at https:
//github.com/mit-pdos/xv6-riscv. See https://pdos.csail.mit.edu/6.1810
for additional pointers to on-line resources for v6 and xv6, including several lab assignments using
xv6.

We have used this text in 6.828 and 6.1810, the operating system classes at MIT. We thank the
faculty, teaching assistants, and students of those classes who have all directly or indirectly con-
tributed to xv6. In particular, we would like to thank Adam Belay, Austin Clements, and Nickolai
Zeldovich. Finally, we would like to thank people who emailed us bugs in the text or suggestions
for improvements: Abutalib Aghayev, Sebastian Boehm, brandb97, Anton Burtsev, Raphael Car-
valho, Tej Chajed,Brendan Davidson, Rasit Eskicioglu, Color Fuzzy, Wojciech Gac, Giuseppe,
Tao Guo, Haibo Hao, Naoki Hayama, Chris Henderson, Robert Hilderman, Eden Hochbaum,
Wolfgang Keller, Paweł Kraszewski, Henry Laih, Jin Li, Austin Liew, lyazj@github.com, Pavan
Maddamsetti, Jacek Masiulaniec, Michael McConville, m3hm00d, Mes0903, miguelgvieira, Mark
Morrissey, Muhammed Mourad, Harry Pan, Harry Porter, Siyuan Qian, Zhefeng Qiao, Askar Safin,
Salman Shah, Huang Sha, Vikram Shenoy, Adeodato Simó, Ruslan Savchenko, Pawel Szczurko,
Warren Toomey, tyfkda, tzerbib, Vanush Vaswani, Chen Wang, Xi Wang, and Zou Chang Wei, Sam
Whitlock, Qiongsi Wu, LucyShawYang, ykf1114@gmail.com, and Meng Zhou

If you spot errors or have suggestions for improvement, please send email to Frans Kaashoek
and Robert Morris (kaashoek,rtm@csail.mit.edu).

7

https://github.com/mit-pdos/xv6-riscv
https://github.com/mit-pdos/xv6-riscv
https://pdos.csail.mit.edu/6.1810

8

Chapter 1

Operating system interfaces

The job of an operating system is to share a computer among multiple programs and to provide a
more useful set of services than the hardware alone supports. An operating system manages and
abstracts the low-level hardware, so that, for example, a word processor need not concern itself
with which type of disk hardware is being used. An operating system shares the hardware among
multiple programs so that they run (or appear to run) at the same time. Finally, operating systems
provide controlled ways for programs to interact, so that they can share data or work together.

An operating system provides services to user programs through an interface. Designing a good
interface turns out to be difficult. On the one hand, we would like the interface to be simple and
narrow because that makes it easier to get the implementation right. On the other hand, we may be
tempted to offer many sophisticated features to applications. The trick in resolving this tension is to
design interfaces that rely on a few mechanisms that can be combined to provide much generality.

This book uses a single operating system as a concrete example to illustrate operating system
concepts. That operating system, xv6, provides the basic interfaces introduced by Ken Thompson
and Dennis Ritchie’s Unix operating system [17], as well as mimicking Unix’s internal design.
Unix provides a narrow interface whose mechanisms combine well, offering a surprising degree
of generality. This interface has been so successful that modern operating systems—BSD, Linux,
macOS, Solaris, and even, to a lesser extent, Microsoft Windows—have Unix-like interfaces. Un-
derstanding xv6 is a good start toward understanding any of these systems and many others.

As Figure 1.1 shows, xv6 takes the traditional form of a kernel, a special program that provides
services to running programs. Each running program, called a process, has memory containing
instructions, data, and a stack. The instructions implement the program’s computation. The data
are the variables on which the computation acts. The stack organizes the program’s procedure calls.
A given computer typically has many processes but only a single kernel.

When a process needs to invoke a kernel service, it invokes a system call, one of the calls in
the operating system’s interface. The system call enters the kernel; the kernel performs the service
and returns. Thus a process alternates between executing in user space and kernel space.

As described in detail in subsequent chapters, the kernel uses the hardware protection mech-
anisms provided by a CPU1 to ensure that each process executing in user space can access only

1This text generally refers to the hardware element that executes a computation with the term CPU, an acronym

9

Kernel

shell cat
user
space

kernel
space

system
call

Figure 1.1: A kernel and two user processes.

its own memory. The kernel executes with the hardware privileges required to implement these
protections; user programs execute without those privileges. When a user program invokes a sys-
tem call, the hardware raises the privilege level and starts executing a pre-arranged function in the
kernel.

The collection of system calls that a kernel provides is the interface that user programs see. The
xv6 kernel provides a subset of the services and system calls that Unix kernels traditionally offer.
Figure 1.2 lists all of xv6’s system calls.

The rest of this chapter outlines xv6’s services—processes, memory, file descriptors, pipes,
and a file system—and illustrates them with code snippets and discussions of how the shell, Unix’s
command-line user interface, uses them. The shell’s use of system calls illustrates how carefully
they have been designed.

The shell is an ordinary program that reads commands from the user and executes them. The
fact that the shell is a user program, and not part of the kernel, illustrates the power of the system
call interface: there is nothing special about the shell. It also means that the shell is easy to replace;
as a result, modern Unix systems have a variety of shells to choose from, each with its own user
interface and scripting features. The xv6 shell is a simple implementation of the essence of the
Unix Bourne shell.

The implementation of the xv6 shell can be found at (7850). (The link is a hyperlink to the rele-
vant xv6 source code at https://github.com/mit-pdos/xv6-riscv/ and the specific
number refers to the sheet and line number in xv6-src-booklet.pdf, as in the Lions’ Commentary
on UNIX 6th Edition [11]. A good practice is to try to read the source code first on your own (in
your favorite development environment, on github, or in a PDF viewer) and then come back to
this book. By the end of this book you should be able to understand every line of xv6 source code
without having to consult this book.

1.1 Processes and memory
An xv6 process consists of user-space memory (instructions, data, and stack) and per-process state
private to the kernel. Xv6 time-shares processes: it transparently switches the available CPUs
among the set of processes waiting to execute. When a process is not executing, xv6 saves the
process’s CPU registers, restoring them when it next runs the process. The kernel associates a

for central processing unit. Other documentation (e.g., the RISC-V specification) also uses the words processor, core,
and hart instead of CPU.

10

https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/sh.c
https://github.com/mit-pdos/xv6-riscv/

System call Description

int fork() Create a process, return child’s PID.
int exit(int status) Terminate the current process; status reported to wait(). No return.
int wait(int *status) Wait for a child to exit; exit status in *status; returns child PID.
int kill(int pid) Terminate process PID. Returns 0, or -1 for error.
int getpid() Return the current process’s PID.
int pause(int n) Pause for n clock ticks.
int exec(char *file, char *argv[]) Load a file and execute it with arguments; only returns if error.
char *sbrk(int n) Grow process’s memory by n zero bytes. Returns start of new memory.
int open(char *file, int flags) Open a file; flags indicate read/write; returns an fd (file descriptor).
int write(int fd, char *buf, int n) Write n bytes from buf to file descriptor fd; returns n.
int read(int fd, char *buf, int n) Read n bytes into buf; returns number read; or 0 if end of file.
int close(int fd) Release open file fd.
int dup(int fd) Return a new file descriptor referring to the same file as fd.
int pipe(int p[]) Create a pipe, put read/write file descriptors in p[0] and p[1].
int chdir(char *dir) Change the current directory.
int mkdir(char *dir) Create a new directory.
int mknod(char *file, int, int) Create a device file.
int fstat(int fd, struct stat *st) Place info about an open file into *st.
int link(char *file1, char *file2) Create another name (file2) for the file file1.
int unlink(char *file) Remove a file.

Figure 1.2: Xv6 system calls. If not otherwise stated, these calls return 0 for no error, and -1 if
there’s an error.

process identifier, or PID, with each process.
A process may create a new process using the fork system call. fork gives the new process

an exact copy of the calling process’s memory: fork copies the instructions, data, and stack of
the calling process into the new process’s memory. fork returns in both the original and new
processes. In the original process, fork returns the new process’s PID. In the new process, fork
returns zero. The original and new processes are often called the parent and child.

For example, consider the following program fragment written in the C programming lan-
guage [7]:

int pid = fork();
if(pid > 0){
printf("parent: child=%d\n", pid);
pid = wait((int *) 0);
printf("child %d is done\n", pid);

} else if(pid == 0){
printf("child: exiting\n");
exit(0);

} else {
printf("fork error\n");

11

}

The exit system call causes the calling process to stop executing and to release resources such as
memory and open files. Exit takes an integer status argument, conventionally 0 to indicate success
and 1 to indicate failure. The wait system call returns the PID of an exited (or killed) child of
the current process and copies the exit status of the child to the address passed to wait; if none of
the caller’s children has exited, wait waits for one to do so. If the caller has no children, wait
immediately returns -1. If the parent doesn’t care about the exit status of a child, it can pass a 0
address to wait.

In the example, the output lines

parent: child=1234
child: exiting

might come out in either order (or even intermixed), depending on whether the parent or child gets
to its printf call first. After the child exits, the parent’s wait returns, causing the parent to print

parent: child 1234 is done

Although the child starts with a copy of the parent’s memory, the parent and child execute with
separate memory and separate registers: changing a variable in one does not affect the other. For
example, when the return value of wait is stored into pid in the parent process, it doesn’t change
the variable pid in the child. The value of pid in the child will still be zero.

The exec system call replaces the calling process’s memory with a new memory image loaded
from a file stored in the file system. The file must have a particular format, which specifies which
part of the file holds instructions, which part is data, at which instruction to start, etc. Xv6 uses the
ELF format, which Chapter 3 discusses in more detail. Usually the file is the result of compiling
a program’s source code. When exec succeeds, it does not return to the calling program; instead,
the instructions loaded from the file start executing at the entry point declared in the ELF header.
exec takes two arguments: the name of the file containing the executable and an array of string
arguments. For example:

char *argv[3];

argv[0] = "echo";
argv[1] = "hello";
argv[2] = 0;
exec("/bin/echo", argv);
printf("exec error\n");

This fragment replaces the calling program with an instance of the program /bin/echo running
with the argument list echo hello. Most programs ignore the first element of the argument array,
which is conventionally the name of the program.

The xv6 shell uses the above calls to run programs on behalf of users. The main structure
of the shell is simple; see main (8001). The main loop reads a line of input from the user with
getcmd. Then it calls fork, which creates a copy of the shell process. The parent calls wait,
while the child runs the command. For example, if the user had typed “echo hello” to the shell,
runcmd would have been called with “echo hello” as the argument. runcmd (7903) runs the

12

https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/sh.c#L146
https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/sh.c#L55

actual command. For “echo hello”, it would call exec (7927). If exec succeeds then the child
will execute instructions from echo instead of runcmd. At some point echo will call exit, which
will cause the parent to return from wait in main (8001).

You might wonder why fork and exec are not combined in a single call; we will see later that
the shell exploits the separation in its implementation of I/O redirection. To avoid the wastefulness
of creating a duplicate process and then immediately replacing it (with exec), operating kernels
optimize the implementation of fork for this use case by using virtual memory techniques such
as copy-on-write (see Section 5).

Xv6 allocates most user-space memory implicitly: fork allocates the memory required for the
child’s copy of the parent’s memory, and exec allocates enough memory to hold the executable
file. A process that needs more memory at run-time (perhaps for malloc) can call sbrk(n) to
grow its data memory by n zero bytes; sbrk returns the location of the new memory.

1.2 I/O and File descriptors
A file descriptor is a small integer representing a kernel-managed object that a process may read
from or write to. A process may obtain a file descriptor by opening a file, directory, or device,
or by creating a pipe, or by duplicating an existing descriptor. For simplicity we’ll often refer
to the object a file descriptor refers to as a “file”; the file descriptor interface abstracts away the
differences between files, pipes, and devices, making them all look like streams of bytes. We’ll
refer to input and output as I/O.

Internally, the xv6 kernel uses the file descriptor as an index into a per-process table, so that
every process has a private space of file descriptors starting at zero. By convention, a process reads
from file descriptor 0 (standard input), writes output to file descriptor 1 (standard output), and
writes error messages to file descriptor 2 (standard error). As we will see, the shell exploits the
convention to implement I/O redirection and pipelines. The shell ensures that it always has three
file descriptors open (8007), which are by default file descriptors for the console.

The read and write system calls read bytes from and write bytes to open files named by file
descriptors. The call read(fd, buf, n) reads at most n bytes from the file descriptor fd, copies
them into buf, and returns the number of bytes read. Each file descriptor that refers to a file has an
offset associated with it. read reads data from the current file offset and then advances that offset
by the number of bytes read: a subsequent read will return the bytes following the ones returned
by the first read. When there are no more bytes to read, read returns zero to indicate the end of
the file.

The call write(fd, buf, n) writes n bytes from buf to the file descriptor fd and returns the
number of bytes written. Fewer than n bytes are written only when an error occurs. Like read,
write writes data at the current file offset and then advances that offset by the number of bytes
written: each write picks up where the previous one left off.

The following program fragment (which forms the essence of the program cat) copies data
from its standard input to its standard output. If an error occurs, it writes a message to the standard
error.

char buf[512];

13

https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/sh.c#L79
https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/sh.c#L146
https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/sh.c#L152

int n;

for(;;){
n = read(0, buf, sizeof buf);
if(n == 0)

break;
if(n < 0){

fprintf(2, "read error\n");
exit(1);

}
if(write(1, buf, n) != n){

fprintf(2, "write error\n");
exit(1);

}
}

The important thing to note in the code fragment is that cat doesn’t know whether it is reading
from a file, console, or a pipe. Similarly cat doesn’t know whether it is printing to a console, a
file, or whatever. The use of file descriptors and the convention that file descriptor 0 is input and
file descriptor 1 is output allows a simple implementation of cat.

The close system call releases a file descriptor, making it free for reuse by a future open,
pipe, or dup system call (see below). A newly allocated file descriptor is always the lowest-
numbered unused descriptor of the current process.

File descriptors and fork interact to make I/O redirection easy to implement. fork copies the
parent’s file descriptor table along with its memory, so that the child starts with exactly the same
open files as the parent. The system call exec replaces the calling process’s memory but preserves
its file table. This behavior allows the shell to implement I/O redirection by forking, closing and
re-opening chosen file descriptors in the child, and then calling exec to run the new program. Here
is a simplified version of the code a shell runs for the command cat < input.txt:

char *argv[2];

argv[0] = "cat";
argv[1] = 0;
if(fork() == 0) {

close(0);
open("input.txt", O_RDONLY);
exec("cat", argv);

}

After the child closes file descriptor 0, open is guaranteed to use that file descriptor for the newly
opened input.txt: 0 will be the smallest available file descriptor. cat then executes with file
descriptor 0 (standard input) referring to input.txt. The parent process’s file descriptors are not
changed by this sequence, since it modifies only the child’s descriptors.

The code for I/O redirection in the xv6 shell works in exactly this way (7931). Recall that at
this point in the code the shell has already forked the child shell and that runcmd will call exec to

14

https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/sh.c#L83

load the new program.
The second argument to open consists of a set of flags, expressed as bits, that control what

open does. The possible values are defined in the file control (fcntl) header (4000-4004): O_RDONLY,
O_WRONLY, O_RDWR, O_CREATE, and O_TRUNC, which instruct open to open the file for reading,
or for writing, or for both reading and writing, to create the file if it doesn’t exist, and to truncate
the file to zero length.

Now it should be clear why it is helpful that fork and exec are separate calls: between the
two, the shell has a chance to redirect the child’s I/O without disturbing the I/O setup of the main
shell. One could instead imagine a hypothetical combined forkexec system call, but the options
for doing I/O redirection with such a call seem awkward. The shell could modify its own I/O
setup before calling forkexec (and then un-do those modifications); or forkexec could take
instructions for I/O redirection as arguments; or (least attractively) every program like cat could
be taught to do its own I/O redirection.

Although fork copies the file descriptor table, each underlying file offset is shared between
parent and child. Consider this example:

if(fork() == 0) {
write(1, "hello ", 6);
exit(0);

} else {
wait(0);
write(1, "world\n", 6);

}

At the end of this fragment, the file attached to file descriptor 1 will contain the data hello world.
The write in the parent (which, thanks to wait, runs only after the child is done) picks up where
the child’s write left off. This behavior helps produce sequential output from sequences of shell
commands, like (echo hello; echo world) >output.txt.

The dup system call duplicates an existing file descriptor, returning a new one that refers to
the same underlying I/O object. Both file descriptors share an offset, just as the file descriptors
duplicated by fork do. This is another way to write hello world into a file:

fd = dup(1);
write(1, "hello ", 6);
write(fd, "world\n", 6);

Two file descriptors share an offset if they were derived from the same original file descriptor
by a sequence of fork and dup calls. Otherwise file descriptors do not share offsets, even if they
resulted from open calls for the same file. dup allows shells to implement commands like this:
ls existing-file non-existing-file > tmp1 2>&1. The 2>&1 tells the shell to give the
command a file descriptor 2 that is a duplicate of descriptor 1. Both the name of the existing file
and the error message for the non-existing file will show up in the file tmp1. The xv6 shell doesn’t
support I/O redirection for the error file descriptor, but now you know how to implement it.

File descriptors are a powerful abstraction, because they hide the details of what they are con-
nected to: a process writing to file descriptor 1 may be writing to a file, to a device like the console,
or to a pipe.

15

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fcntl.h#L1-L5

1.3 Pipes
A pipe is a small kernel buffer exposed to processes as a pair of file descriptors, one for reading
and one for writing. Writing data to one end of the pipe makes that data available for reading from
the other end of the pipe. Pipes provide a way for processes to communicate.

The following example code runs the program wc with standard input connected to the read
end of a pipe.

int p[2];
char *argv[2];

argv[0] = "wc";
argv[1] = 0;

pipe(p);
if(fork() == 0) {

close(0);
dup(p[0]);
close(p[0]);
close(p[1]);
exec("/bin/wc", argv);

} else {
close(p[0]);
write(p[1], "hello world\n", 12);
close(p[1]);

}

The program calls pipe, which creates a new pipe and records the read and write file descriptors
in the array p. After fork, both parent and child have file descriptors referring to the pipe. The
child calls close and dup to make file descriptor zero refer to the read end of the pipe, closes the
file descriptors in p, and calls exec to run wc. When wc reads from its standard input, it reads from
the pipe. The parent closes the read side of the pipe, writes to the pipe, and then closes the write
side.

If no data is available, a read on a pipe waits for either data to be written or for all file descrip-
tors referring to the write end to be closed; in the latter case, read will return 0, just as if the end of
a data file had been reached. The fact that read blocks until it is impossible for new data to arrive
is one reason that it’s important for the child to close the write end of the pipe before executing
wc above: if one of wc ’s file descriptors referred to the write end of the pipe, wc would never see
end-of-file.

The xv6 shell implements pipelines such as grep fork sh.c | wc -l in a manner similar
to the above code (7950). The child process creates a pipe to connect the left end of the pipeline
with the right end. Then it calls fork and runcmd for the left end of the pipeline and fork and
runcmd for the right end, and waits for both to finish. The right end of the pipeline may be a
command that itself includes a pipe (e.g., a | b | c), which itself forks two new child processes
(one for b and one for c). Thus, the shell may create a tree of processes. The leaves of this tree are

16

https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/sh.c#L101

commands and the interior nodes are processes that wait until the left and right children complete.
Pipes may seem no more powerful than temporary files: the pipeline

echo hello world | wc

could be implemented without pipes as

echo hello world >/tmp/xyz; wc </tmp/xyz

Pipes have at least three advantages over temporary files in this situation. First, pipes automatically
clean themselves up; with the file redirection, a shell would have to be careful to remove /tmp/xyz
when done. Second, pipes can pass arbitrarily long streams of data, while file redirection requires
enough free space on disk to store all the data. Third, pipes allow for parallel execution of pipeline
stages, while the file approach requires the first program to finish before the second starts.

1.4 File system
The xv6 file system provides data files, which contain uninterpreted byte arrays, and directories,
which contain named references to data files and other directories. The directories form a tree,
starting at a special directory called the root. A path like /a/b/c refers to the file or directory
named c inside the directory named b inside the directory named a in the root directory /. Paths
that don’t begin with / are evaluated relative to the calling process’s current directory, which can
be changed with the chdir system call. Both these code fragments open the same file (assuming
all the directories involved exist):

chdir("/a");
chdir("b");
open("c", O_RDONLY);

open("/a/b/c", O_RDONLY);

The first fragment changes the process’s current directory to /a/b; the second neither refers to nor
changes the process’s current directory.

There are system calls to create new files and directories: mkdir creates a new directory, open
with the O_CREATE flag creates a new data file, and mknod creates a new device file. This example
illustrates all three:

mkdir("/dir");
fd = open("/dir/file", O_CREATE|O_WRONLY);
close(fd);
mknod("/console", 1, 1);

mknod creates a special file that refers to a device. Associated with a device file are the major and
minor device numbers (the two arguments to mknod), which uniquely identify a kernel device.
When a process later opens a device file, the kernel diverts read and write system calls to the
kernel device implementation instead of passing them to the file system.

A file’s name is distinct from the file itself; the same underlying file, called an inode, can have
multiple names, called links. Each link consists of an entry in a directory; the entry contains a file

17

name and a reference to an inode. An inode holds metadata about a file, including its type (file or
directory or device), its length, the location of the file’s content on disk, and the number of links to
a file.

The fstat system call retrieves information from the inode that a file descriptor refers to. It
fills in a struct stat, defined in stat.h (4050) as:

#define T_DIR 1 // Directory
#define T_FILE 2 // File
#define T_DEVICE 3 // Device

struct stat {
int dev; // File system’s disk device
uint ino; // Inode number
short type; // Type of file
short nlink; // Number of links to file
uint64 size; // Size of file in bytes

};

The link system call creates another file system name referring to the same inode as an exist-
ing file. This fragment creates a new file named both a and b.

open("a", O_CREATE|O_WRONLY);
link("a", "b");

Reading from or writing to a is the same as reading from or writing to b. Each inode is identified
by a unique inode number. After the code sequence above, it is possible to determine that a and b

refer to the same underlying contents by inspecting the result of fstat: both will return the same
inode number (ino), and the nlink count will be set to 2.

The unlink system call removes a name from the file system. The file’s inode and the disk
space holding its content are only freed when the file’s link count is zero and no file descriptors
refer to it. Thus adding

unlink("a");

to the last code sequence leaves the inode and file content accessible as b. Furthermore,

fd = open("/tmp/xyz", O_CREATE|O_RDWR);
unlink("/tmp/xyz");

is an idiomatic way to create a temporary inode with no name that will be cleaned up when the
process closes fd or exits.

Unix provides file utilities callable from the shell as user-level programs, for example mkdir,
ln, and rm. This design allows anyone to extend the command-line interface by adding new user-
level programs. In hindsight this plan seems obvious, but other systems designed at the time of
Unix often built such commands into the shell (and built the shell into the kernel).

One exception is cd, which is built into the shell (8021). cd must change the current working
directory of the shell itself. If cd were run as a regular command, then the shell would fork a child
process, the child process would run cd, and cd would change the child ’s working directory. The
parent’s (i.e., the shell’s) working directory would not change.

18

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/stat.h
https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/sh.c#L166

1.5 Real world
Unix’s combination of “standard” file descriptors, pipes, and convenient shell syntax for operations
on them was a major advance in writing general-purpose reusable programs. The idea sparked a
culture of “software tools” that was responsible for much of Unix’s power and popularity, and the
shell was the first so-called “scripting language.” The Unix system call interface persists today in
systems like BSD, Linux, and macOS.

The Unix system call interface has been standardized through the Portable Operating System
Interface (POSIX) standard. Xv6 is not POSIX compliant: it is missing many system calls (in-
cluding basic ones such as lseek), and many of the system calls it does provide differ from the
standard. Our main goals for xv6 are simplicity and clarity while providing a simple UNIX-like
system-call interface. Several people have extended xv6 with a few more system calls and a sim-
ple C library in order to run basic Unix programs. Modern kernels, however, provide many more
system calls, and many more kinds of kernel services, than xv6. For example, they support net-
working, windowing systems, user-level threads, drivers for many devices, and so on. Modern
kernels evolve continuously and rapidly, and offer many features beyond POSIX.

Unix unified access to multiple types of resources (files, directories, and devices) with a single
set of file-name and file-descriptor interfaces. This idea can be extended to more kinds of resources;
a good example is Plan 9 [16], which applied the “resources are files” concept to networks, graph-
ics, and more. However, most Unix-derived operating systems have not followed this route.

The file system and file descriptors have been powerful abstractions. Even so, there are other
models for operating system interfaces. Multics, a predecessor of Unix, abstracted file storage in a
way that made it look like memory, producing a very different flavor of interface. The complexity
of the Multics design had a direct influence on the designers of Unix, who aimed to build something
simpler.

Xv6 does not provide a notion of users or of protecting one user from another; in Unix terms,
all xv6 processes run as root.

This book examines how xv6 implements its Unix-like interface, but the ideas and concepts
apply to more than just Unix. Any operating system must multiplex processes onto the underlying
hardware, isolate processes from each other, and provide mechanisms for controlled inter-process
communication. After studying xv6, you should be able to look at other, more complex operating
systems and see the concepts underlying xv6 in those systems as well.

1.6 Exercises
1. Write a program that uses UNIX system calls to “ping-pong” a byte between two processes

over a pair of pipes, one for each direction. Measure the program’s performance, in ex-
changes per second.

19

20

Chapter 2

Operating system organization

A key requirement for an operating system is to support several activities at once. For example, one
might use the fork and exec system calls from Chapter 1 to start both a compiler and a text editor
as processes. The operating system must time-share resources such as CPUs and memory among
these processes. The operating system must also arrange for isolation between the processes. If one
process has a bug and malfunctions, it shouldn’t affect unrelated processes. Complete isolation,
however, is too strong, since it should be possible for processes to intentionally interact; pipelines
are an example. Thus an operating system must fulfill three requirements: multiplexing, isolation,
and interaction.

This chapter provides an overview of how operating systems are organized to achieve these
three requirements. It turns out there are many ways to do so, but this text focuses on mainstream
designs centered around a monolithic kernel, which is used by many Unix operating systems. This
chapter also provides an overview of an xv6 process, the unit of isolation in xv6.

Xv6 runs on a multi-core1 RISC-V microprocessor, and much of its low-level functionality
(for example, its process implementation) is specific to RISC-V. RISC-V is a 64-bit CPU, and xv6
is written in “LP64” C, which means long (L) and pointers (P) in the C programming language
are 64 bits, but an int is 32 bits. This book assumes the reader has done a bit of machine-level
programming on some architecture, and will introduce RISC-V-specific ideas as they come up. The
user-level ISA [2] and privileged architecture [3] documents are the complete specifications. You
may also refer to “The RISC-V Reader: An Open Architecture Atlas” [15].

The CPU in a complete computer is surrounded by support hardware, much of it in the form
of I/O interfaces. Xv6 is written for the support hardware simulated by qemu’s “-machine virt”
option. This includes RAM, a ROM containing boot code, a serial connection to the user’s key-
board/screen, and a disk for storage.

1By “multi-core” this text means multiple CPUs that share memory but execute in parallel, each with its own set of
registers. This text sometimes uses the term multiprocessor as a synonym for multi-core, though multiprocessor can
also refer more specifically to a computer with several distinct processor chips.

21

2.1 Abstracting physical resources
The first question one might ask when encountering an operating system is why have it at all? That
is, one could implement the system calls in Figure 1.2 as a library, with which applications link. In
this plan, each application could even have its own library tailored to its needs. Applications could
directly interact with hardware resources and use those resources in the best way for the application
(e.g., to achieve high or predictable performance). Some operating systems for embedded devices
or real-time systems are organized in this way.

The downside of this library approach is that, if there is more than one application running, the
applications must be well-behaved. For example, each application must periodically give up the
CPU so that other applications can run. Such a cooperative time-sharing scheme may be OK if all
applications trust each other and have no bugs. It’s more typical for applications to not trust each
other, and to have bugs, so one often wants stronger isolation than a cooperative scheme provides.

To achieve strong isolation it’s helpful to forbid applications from directly accessing sensitive
hardware resources, and instead to abstract the resources into services. For example, Unix applica-
tions interact with storage only through the file system’s open, read, write, and close system
calls, instead of reading and writing the disk directly. This provides the application with the conve-
nience of pathnames, and it allows the operating system (which provides the interface) to manage
the disk. Even if isolation is not a concern, programs that interact intentionally (or just wish to keep
out of each other’s way) are likely to find a file system a more convenient abstraction than direct
use of the disk.

Similarly, Unix transparently switches hardware CPUs among processes, saving and restor-
ing register state as necessary, so that applications don’t have to be aware of time-sharing. This
transparency allows the operating system to share CPUs even if some applications are in infinite
loops.

As another example, Unix processes use exec to build up their memory image, instead of
directly interacting with physical memory. This allows the operating system to decide where to
place a process in memory; if memory is tight, the operating system might even store some of a
process’s data on disk. exec also provides users with the convenience of a file system to store
executable program images.

Many forms of interaction among Unix processes occur via file descriptors. Not only do file
descriptors abstract away many details (e.g., where data in a pipe or file is stored), they are also
defined in a way that simplifies interaction. For example, if one application in a pipeline exits or
fails, the kernel automatically generates an end-of-file signal for the next process in the pipeline.

The system-call interface in Figure 1.2 is carefully designed to provide both programmer con-
venience and the possibility of strong isolation. The Unix interface is not the only way to abstract
resources, but it has proved to be a good one.

2.2 User mode, supervisor mode, and system calls
Strong isolation requires a hard boundary between applications and the operating system. Appli-
cations shouldn’t be allowed to disturb the operation of the operating system or other programs,

22

even if the application has a bug or is malicious. To achieve strong isolation, the operating system
must arrange that applications cannot modify (or even read) the operating system’s data structures
and instructions and that applications cannot access other processes’ memory.

CPUs provide hardware support for strong isolation. For example, RISC-V has three privilege
levels which constrain what code can do: machine mode, supervisor mode, and user mode. In-
structions executing in machine mode have full privilege; a CPU starts in machine mode. Machine
mode is mostly intended for setting up the computer during boot. Xv6 executes briefly in machine
mode and then changes to supervisor mode.

In supervisor mode the CPU is allowed to execute privileged instructions: for example, en-
abling and disabling interrupts, reading and writing the register that holds the address of the page
table, etc. If an application in user mode attempts to execute a privileged instruction, then the CPU
doesn’t execute the instruction, but “traps” to special code in supervisor mode that can terminate
the application. Figure 1.1 in Chapter 1 illustrates this organization. An application can execute
only user-mode instructions (e.g., adding numbers, etc.) and is said to be running in user space,
while the software in supervisor mode can also execute privileged instructions and is said to be
running in kernel space. The software running in kernel space (or in supervisor mode) is called the
kernel.

Applications interact with the kernel via system calls calls such as read. Applications are
not allowed to directly call kernel functions or access the kernel’s memory. RISC-V provides the
ecall instruction for system calls; it switches the CPU from user to supervisor mode and jumps to
a kernel-specified entry point. Once the CPU has switched to supervisor mode, the kernel can then
validate the arguments of the system call (e.g., check if the address passed to the system call is part
of the application’s memory), decide whether the application is allowed to perform the requested
operation (e.g., check if the application is allowed to write the specified file), and then deny it or
execute it. It is important that the kernel control the entry point for transitions to supervisor mode;
if the application could decide the kernel entry point, a malicious application could, for example,
enter the kernel at a point where the validation of arguments is skipped.

2.3 Kernel organization
A key design question is what part of the operating system should run in supervisor mode. One
possibility is that the entire operating system resides in the kernel, so that the implementations of
all system calls run in supervisor mode. This organization is called a monolithic kernel.

In a monolithic organization the entire operating system consists of a single program running
in supervisor mode. One reason this organization is convenient is that the OS designer doesn’t have
to divide code into parts that do and do not require supervisor privileges. Furthermore, it is easy for
different parts of the operating system to cooperate, since they are parts of a single program. For
example, a monolithic kernel might share a disk block cache with the file system and the virtual
memory system.

A downside is that monolithic kernels tend to grow large and complex, so that no one developer
understands all of the interactions between different parts of the code; this is a recipe for bugs. A
bug in the kernel is particularly troublesome because it may cause the entire computer to crash,

23

Microkernel

shell File serveruser
space

kernel
space

Send message

Figure 2.1: A microkernel with a file-system server

or cause many applications to malfunction, or make the entire computer vulnerable to security
attacks.

A microkernel aims to reduce the incidence of bugs in the kernel. The idea is to put an absolute
minimum of functionality in the kernel itself, so that little code executes in supervisor mode, and so
that the kernel is easy to understand and analyze for correctness. The bulk of the operating system
runs as user-level server processes. For example, the file system code would execute as a server
process, in user mode rather than supervisor mode.

Figure 2.1 illustrates this microkernel design. In the figure, the file system runs as a user-level
server process. To allow applications to interact with the file server, the kernel provides an inter-
process communication mechanism to send messages from one user-mode process to another. For
example, if an application like the shell wants to read or write a file, it sends a message to the file
server and waits for a response.

In a microkernel, the kernel interface consists of a few low-level functions for starting applica-
tions, sending messages, accessing device hardware, etc. This organization allows the kernel to be
relatively simple, as most of the operating system resides in user-level servers.

In the real world, both monolithic kernels and microkernels are popular. Many Unix kernels
are monolithic. For example, Linux has a monolithic kernel, although some OS functions run as
user-level servers (e.g., the window system). Linux delivers high performance to OS-intensive
applications, partially because the subsystems of the kernel can be tightly integrated.

Operating systems such as Minix, L4, and QNX are organized as a microkernel with servers,
and have seen wide deployment in embedded settings. A variant of L4, seL4, is small enough that
it has been verified for memory safety and other security properties [8].

There is much debate among developers of operating systems about which organization is
better, but there is no conclusive evidence one way or the other. Furthermore, it depends much on
what “better” means: faster performance, smaller code size, reliability of the kernel, reliability of
the complete operating system (including user-level services), etc.

There are also practical considerations that may be more important than the question of which
organization. Some operating systems have a microkernel but run some of the user-level services
in kernel space for performance reasons. Some operating systems have monolithic kernels because
that is how they started and there is little incentive to move to a pure microkernel organization,
because new features may be more important than rewriting the existing operating system to fit a
microkernel design.

From this book’s perspective, microkernel and monolithic operating systems share many key
ideas. They implement system calls, they use page tables, they handle interrupts, they support

24

File Description

Boot entry.S Very first boot instructions.
main.c Control initialization of other modules.
start.c Early machine-mode boot code.

Processes exec.c exec() system call.
proc.c Processes and scheduling.
swtch.S Thread switching.
sysproc.c Process-related system calls.

Traps kernelvec.S Handle traps from kernel code.
trampoline.S Handle traps from user code.
trap.c C code to handle and return from traps and interrupts.
syscall.c Dispatch system calls to handling function.

Memory vm.c Manage page tables and address spaces.
kalloc.c Physical page allocator.

Devices console.c Connect to the user keyboard and screen.
plic.c RISC-V interrupt controller.
printf.c Formatted output to the console.
uart.c Serial-port console device driver.
virtio_disk.c Disk device driver.

FS bio.c Disk block cache for the file system.
file.c File descriptor support.
fs.c File system.
log.c File system logging and crash recovery.
sysfile.c File-related system calls.
pipe.c Pipes.

Misc sleeplock.c Locks that yield the CPU.
spinlock.c Locks that don’t yield the CPU.
string.c C string and byte-array library.

Figure 2.2: Xv6 kernel source files.

processes, they use locks for concurrency control, they implement a file system, etc. This book
focuses on these core ideas.

Xv6 is implemented as a monolithic kernel, like most Unix operating systems. Thus, the xv6
kernel interface corresponds to the operating system interface, and the kernel implements the com-
plete operating system. Since xv6 doesn’t provide many services, its kernel is smaller than some
microkernels, but conceptually xv6 is monolithic.

2.4 Code: xv6 organization
The xv6 kernel source is in the kernel/ sub-directory. Figure 2.2 lists the files, divided into
the major areas of kernel responsibility: starting the system (booting), creating and controlling

25

0

user text
and data

user stack

heap

MAXVA
trampoline
trapframe

Figure 2.3: Layout of a process’s virtual address space

processes, handling traps (interrupts and system calls), allocating memory and configuring virtual
addresses, controlling devices, and managing the file-system.

2.5 Process overview
The unit of isolation in xv6 (as in other Unix operating systems) is a process. The process ab-
straction prevents one process from wrecking or spying on another process’s memory, CPU, file
descriptors, etc. It also prevents a process from wrecking the kernel itself, so that a process can’t
subvert the kernel’s isolation mechanisms. The kernel must implement the process abstraction
with care because a buggy or malicious application may trick the kernel or hardware into doing
something bad (e.g., circumventing isolation). The mechanisms used by the kernel to implement
processes include the user/supervisor mode flag, address spaces, and time-slicing of threads.

To help enforce isolation, the process abstraction provides the illusion to a program that it has
its own private machine. A process provides a program with what appears to be a private memory
system, or address space, which other processes cannot read or write. A process also provides the
program with what appears to be its own CPU to execute the program’s instructions.

Xv6 uses page tables (which are implemented by hardware) to give each process its own ad-
dress space. The RISC-V page table translates (or “maps”) a virtual address (the address that an
RISC-V instruction manipulates) to a physical address (an address that the CPU sends to main
memory).

Xv6 maintains a separate page table for each process that defines that process’s address space.
As illustrated in Figure 2.3, an address space includes the process’s user memory starting at virtual
address zero. Instructions come first, followed by global variables, then the stack, and finally a
“heap” area (for malloc) that the process can expand as needed. There are a number of factors that
limit the maximum size of a process’s address space: pointers on the RISC-V are 64 bits wide; the
hardware uses only the low 39 bits when looking up virtual addresses in page tables; and xv6 uses

26

only 38 of those 39 bits. Thus, the maximum address is 238−1 = 0x3fffffffff, which is MAXVA (0899).
At the top of the address space xv6 places a trampoline page (4096 bytes) and a trapframe page.
Xv6 uses these two pages to transition into the kernel and back; the trampoline page contains the
code to transition in and out of the kernel, and the trapframe is where the kernel saves the process’s
user registers, as Chapter 4 explains.

The xv6 kernel maintains many pieces of state for each process, which it gathers into a struct proc

(2034). A process’s most important pieces of kernel state are its page table, its kernel stack, and its
run state. We’ll use the notation p->xxx to refer to elements of the proc structure; for example,
p->pagetable is a pointer to the process’s page table.

At this point, please read kernel/proc.h, which defines struct proc. The xv6 code is
more important for you to understand than this book; you should prioritize the code, and consult
this book as needed to clarify the code. The purpose of some of the code may not be apparent at
first, but further reading and searching the code will help. Feel free to explore and modify the code.

Each process has a thread of control (or thread for short) that holds the state needed to ex-
ecute the process. At any given time, a thread might be executing on a CPU, or suspended (not
executing, but capable of resuming executing in the future). To switch a CPU between processes,
the kernel suspends the thread currently running on that CPU and saves its state, and restores the
state of another process’s previously-suspended thread. Much of the state of a thread (local vari-
ables, function call return addresses) is stored on the thread’s stacks. Each process has two stacks:
a user stack and a kernel stack (p->kstack). When the process is executing user instructions,
only its user stack is in use, and its kernel stack is empty. When the process enters the kernel (for
a system call or interrupt), the kernel code executes on the process’s kernel stack; while a process
is in the kernel, its user stack still contains saved data, but isn’t actively used. A process’s thread
alternates between actively using its user stack and its kernel stack. The kernel stack is separate
(and protected from user code) so that the kernel can execute even if a process has wrecked its user
stack.

A process’s user code can make a system call by executing the RISC-V ecall instruction. This
instruction switches to supervisor mode and changes the program counter to a kernel-defined entry
point. The code at the entry point switches to the process’s kernel stack and executes the kernel
instructions that implement the system call. When the system call completes, the kernel returns to
user space by executin the sret instruction, which switches to user mode and resumes executing
user instructions just after the system call instruction. A process’s thread can “block” in the kernel
to wait for I/O, and resume where it left off when the I/O has finished.

p->state indicates whether the process is allocated, ready to run, currently running on a CPU,
waiting for I/O, or exiting.

p->pagetable holds the process’s page table, in the format that the RISC-V hardware ex-
pects. Xv6 causes the paging hardware to use a process’s p->pagetable when executing that
process in user space. A process’s page table also serves as the record of the addresses of the
physical pages allocated to store the process’s memory.

In summary, a process bundles two design ideas: an address space to give a process the illusion
of its own memory, and a thread to give the process the illusion of its own CPU. In xv6, a process
consists of one address space and one thread. In real operating systems a process may have more

27

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/riscv.h#L380
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.h#L85

than one thread to take advantage of multiple CPUs.

2.6 Code: starting xv6, the first process and system call
To make xv6 more concrete, we’ll outline how the kernel starts and runs the first process. The
subsequent chapters will describe the mechanisms that show up in this overview in more detail.
Please read kernel/entry.S, kernel/start.c, kernel/main.c, and user/init.c.

When the RISC-V computer powers on, it initializes itself and runs a boot loader which is
stored in read-only memory. The boot loader copies the xv6 kernel into memory at physical address
0x80000000. The reason it places the kernel at 0x80000000 rather than 0x0 is because the
address range 0x0:0x80000000 contains I/O devices.

Then the boot loader jumps to xv6 starting at _entry (1006). The RISC-V starts with pag-
ing hardware disabled: virtual addresses map directly to physical addresses. The instructions at
_entry set up a stack so that xv6 can run C code. Xv6 declares space for this stack, stack0, in
the file start.c (1060). The code at _entry loads the stack pointer register sp with the address
stack0+4096, the top of the stack, because the stack on RISC-V grows down. Now that the kernel
has a stack, _entry calls into C code at start (1064).

The function start performs some setup that the CPU only allows in machine mode, most
crucially programming the clock chip to generate timer interrupts. Then start uses the RISC-
V mret instruction to switch to supervisor mode and jump to main (1160). mret requires a bit
of setup: start sets the previous privilege mode to supervisor in the register mstatus, sets
the destination address to main by writing main’s address into the register mepc, disables virtual
address translation in supervisor mode by writing 0 into the page-table register satp, and delegates
all interrupts and exceptions to supervisor mode.

After main (1160) initializes several devices and subsystems, it creates the first process by
calling userinit (2327). All newly created processes start executing in the kernel in forkret

(2653). As a special case for the first process, forkret calls kexec to load the user program
/init.

After calling kexec, forkret returns to user space in the /init process. init (7764) creates
a new console device file if needed and then opens it as file descriptors 0, 1, and 2. Then it starts a
shell on the console. The system is up.

2.7 Security Model
You may wonder how the operating system deals with buggy or malicious code. Because coping
with malice is strictly harder than dealing with accidental bugs, it’s reasonable to focus mostly
on providing security against malice. Here’s a high-level view of typical security assumptions and
goals in operating system design.

The operating system must assume that a process’s user-level code will do its best to wreck the
kernel or other processes. User code may try to dereference pointers outside its allowed address
space; it may attempt to execute instructions not intended for user code; it may try to read and

28

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/entry.S#L7
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/start.c#L11
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/start.c#L15
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/main.c#L11
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/main.c#L11
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L220
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L503
https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/init.c#L15

write RISC-V control registers; it may try to access device hardware; and it may pass clever values
to system calls in an attempt to trick the kernel into crashing or doing something stupid.

The kernel’s goal is to restrict each user process so that it can only access its own user memory,
use the 32 general-purpose RISC-V registers, and affect the kernel and other processes in the
ways that system calls are intended to allow. The kernel must prevent any other actions. These are
typically absolute requirements in kernel design.

Expectations for the kernel’s own code are different. Kernel code is assumed to be written by
well-meaning and careful programmers, to be bug-free, and to contain nothing malicious. This
assumption affects how we analyze kernel code. For example, there are many internal kernel func-
tions (e.g., the spin locks) that would cause serious problems if kernel code used them incorrectly.
We assume, however, that the kernel uses its own functions correctly. At the hardware level, the
RISC-V CPU, RAM, disk, etc. are assumed to operate as advertised in the documentation, with no
hardware bugs.

Real life is not so straightforward. It’s difficult to prevent abusive user programs from calling
system calls in a way that makes the system unusable by consuming kernel-protected resources:
disk space, CPU time, process table slots, etc. It’s usually impossible to write 100% bug-free
kernel code or design bug-free hardware; if the writers of malicious user code are aware of kernel
or hardware bugs, they will exploit them. Even in mature, widely-used kernels, such as Linux,
people often discover previously-unknown vulnerabilities [1]. Finally, the distinction between user
and kernel code is sometimes blurred: some privileged user-level processes may provide essential
services and effectively be part of the operating system, and in some operating systems privileged
user code can insert new code into the kernel (as with Linux’s loadable kernel modules and eBPF).

As a partial defense against kernel bugs, xv6 code includes checks for inconsistencies and
unrecoverable errors, and will “panic” in response, by calling panic(). This function prints an
error message and halts the system. Panicking is not desirable, but is preferable to continuing
execution. Typically a panic results from a kernel bug that causes kernel data to be incorrect or
causes the kernel to perform an illegal action such as referencing non-existent memory; in such a
situation it is safer to halt execution with panic() than to try to continue in an inconsistent state.
A kernel developer would react to a panic by working to identify and fix the underlying code bug.

2.8 Real world
Most operating systems have adopted the process concept, and most processes look similar to
xv6’s. Modern operating systems, however, support several threads within a process, to allow a
single process to exploit multiple CPUs. Supporting multiple threads in a process involves quite a
bit of machinery that xv6 doesn’t have, often including interface changes (e.g., Linux’s clone, a
variant of fork), to control which aspects of a process threads share.

2.9 Exercises
1. Add a system call to xv6 that returns the amount of free memory available.

29

30

Chapter 3

Page tables

Page tables are the most popular mechanism through which the operating system provides each
process with its own private address space and memory. Page tables determine what memory ad-
dresses mean, and what parts of physical memory can be accessed. They allow xv6 to isolate
different processes’ address spaces and to multiplex them onto a single physical memory. Page
tables provide a level of indirection that allows operating systems to perform many useful tricks.
Xv6 performs a few: mapping the same memory (a trampoline page) in several address spaces,
guarding kernel and user stacks with an unmapped page, and allocating user heap memory lazily.
The rest of this chapter explains the page tables that the RISC-V hardware provides and how xv6
uses them.

3.1 Paging hardware

As a reminder, RISC-V instructions (both user and kernel) manipulate virtual addresses. The ma-
chine’s RAM, or physical memory, is indexed with physical addresses. The RISC-V page table
hardware connects these two kinds of addresses, by mapping each virtual address to a physical
address.

Xv6 uses RISC-V’s Sv39 mode, which means that only the bottom 39 bits of a 64-bit virtual
address are used; the top 25 bits are not used. In this Sv39 configuration, a RISC-V page table
is logically an array of 227 (134,217,728) page table entries (PTEs). Each PTE contains a 44-bit
physical page number (PPN) and some flags. The paging hardware translates a virtual address by
using the top 27 bits of the 39 bits to index into the page table to find a PTE, and making a 56-bit
physical address whose top 44 bits come from the PPN in the PTE and whose bottom 12 bits are
copied from the original virtual address. Figure 3.1 shows this process with a logical view of the
page table as a simple array of PTEs (the RISC-V page table is actually a tree; see Figure 3.2 for
a fuller story). A page table gives the operating system control over virtual-to-physical address
translations at the granularity of aligned chunks of 4096 (212) bytes. Such a chunk is called a page.

RISC-V’s design leaves room for expansion of both virtual and physical addresses. If more
virtual address space is needed, RISC-V supports an Sv48 mode, with 48-bit virtual addresses [3].
Physical addresses also have room for growth: there is room in the PTE format for the physical

31

Virtual address

Physical Address

12

Offset

12

PPN Flags

0

1

10

Page table

27

EXT

2^2744

44

Index

25

64

56

Figure 3.1: An abstract view of a flat page table mapping virtual to physical addresses.

page number to grow by another 10 bits. The designers of RISC-V chose address sizes based on
technology predictions. 248 bytes is 262,144 GB, a much larger user virtual address space than any
application is likely to use today. 256 bytes of physical address space is 65,536 terabytes, much
more RAM than any computer can currently be equipped with.

As Figure 3.2 shows, a RISC-V CPU page table is stored in physical memory as a three-level
tree. The root of the tree is a 4096-byte page-table page that contains 512 PTEs, which contain the
physical addresses for page-table pages in the next level of the tree. Each of those pages contains
512 PTEs for the final level in the tree. The paging hardware uses the top 9 bits of the 27 bits to
select a PTE in the root page-table page, the middle 9 bits to select a PTE in a page-table page in
the next level of the tree, and the bottom 9 bits to select the final PTE. (In Sv48 RISC-V a page
table has four levels, and bits 39 through 47 of a virtual address index into the top-level.)

If any of the three PTEs required to translate an address is not present, the paging hardware
raises a page-fault exception, leaving it up to the kernel to handle the page fault (see Chapters 4
and 5).

The three-level structure of Figure 3.2 allows a memory-efficient way of recording PTEs, com-
pared to the single-level design of Figure 3.1. In the common case in which large ranges of virtual
addresses have no mappings, the three-level structure can omit entire page directories. For exam-
ple, if an application uses only a few pages starting at address zero, then the entries 1 through 511
of the top-level page directory are invalid, and the kernel doesn’t have to allocate pages those for
511 intermediate page directories. Furthermore, the kernel also doesn’t have to allocate pages for
the bottom-level page directories for those 511 intermediate page directories. So, in this example,
the three-level design saves 511 pages for intermediate page directories and 511 × 512 pages for
bottom-level page directories.

Although a CPU walks the three-level structure in hardware as part of executing a load or store
instruction, a potential downside of three levels is that the CPU must load three PTEs from memory
to perform the translation of the virtual address in the load/store instruction to a physical address.
To avoid the cost of loading PTEs from physical memory, a RISC-V CPU caches page table entries

32

Physical Page Number

6

A

5 4 3

U

2

W

1

V

07891063

V
R
W
X
U

A
D

- Valid
- Readable
- Writable
- Executable
- User

- Accessed
- Dirty (0 in page directory)

Virtual address Physical Address
129

L1 L0 Offset

12

PPN Offset

PPN Flags

0

1

10

Page Directory

satp

L2

PPN Flags

0

1

44 10

Page Directory

PPN Flags

0

1

511
10

Page Directory

99

EXT
9

511

511

44

44

44

D U X RG

A - Accessed
-G - Global

RSW

Reserved for supervisor software

53

Reserved

Figure 3.2: RISC-V address translation details.

in a Translation Look-aside Buffer (TLB).
Each PTE contains flag bits that tell the paging hardware how the associated virtual address

is allowed to be used. PTE_V indicates whether the PTE is present: if it is not set, a reference to
the page causes a page fault (i.e., is not allowed). PTE_R controls whether instructions are allowed
to read to the page. PTE_W controls whether instructions are allowed to write to the page. PTE_X
controls whether the CPU may interpret the content of the page as instructions and execute them.
PTE_U controls whether instructions in user mode are allowed to access the page; if PTE_U is not
set, the PTE can be used only in supervisor mode. Figure 3.2 shows where the flag bits sit in a
PTE. The flags and all other page hardware-related structures are defined in (0500)

To tell a CPU to use a page table, the kernel must write the physical address of the root page-
table page into the satp register. A CPU will translate all addresses generated by subsequent
instructions using the page table pointed to by its satp. Each CPU has its own satp so that
different CPUs can run different processes, each with a private address space described by its own
page table.

From the kernel’s point of view, a page table is data stored in memory, and the kernel creates
and modifies page tables using code much like you might see for any tree-shaped data structure.

A few notes about terms used in this book. Physical memory refers to storage cells in RAM.
A byte of physical memory has an address, called a physical address. Instructions that dereference
addresses (such as loads, stores, jumps, and function calls) use only virtual addresses, which the
paging hardware translates to physical addresses, and then sends to the RAM hardware to read or

33

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/riscv.h

write storage. An address space is the set of virtual addresses that are valid in a given page table;
each xv6 process has a separate user address space, and the xv6 kernel has its own address space as
well. User memory refers to a process’s user address space plus the physical memory that the page
table allows the process to access. Virtual memory refers to the ideas and techniques associated
with managing page tables and using them to achieve goals such as isolation.

0

Trampoline

Unused

Unused

UnusedKstack 0
Guard page

Kstack 1
Guard page

0x1000

0

R-X

Virtual Addresses

CLINT

Kernel text

boot ROM

Physical Addresses
2^56-1

Unused
and other I/O devices

0x02000000

0x0C000000 PLIC

UART0
VIRTIO disk

0x10000000
0x10001000

KERNBASE
(0x80000000)

PHYSTOP
(0x88000000)

MAXVA

Kernel data

R-X

RW-

Physical memory (RAM)

VIRTIO disk
UART0

PLIC

RW-
RW-

RW-

Free memory
RW-

...

RW-

RW-

Figure 3.3: On the left, xv6’s kernel virtual address space. RWX refer to PTE read, write, and
execute permissions. On the right, the RISC-V physical address space that xv6 expects to see.

3.2 Kernel address space

When it starts, xv6 creates a single page table describing the kernel’s address space. The kernel
configures the layout of its address space to give itself access to physical memory and various

34

hardware resources at predictable virtual addresses. Figure 3.3 shows how this layout maps ker-
nel virtual addresses to physical addresses. The file (0200) declares the constants for xv6’s kernel
memory layout.

QEMU simulates a computer that includes RAM (physical memory) starting at physical ad-
dress 0x80000000 and continuing through at least 0x88000000, which xv6 calls PHYSTOP.
The QEMU simulation also includes I/O devices such as a disk interface. QEMU exposes the de-
vice interfaces to software as memory-mapped control registers that sit below 0x80000000 in the
physical address space. The kernel can interact with the devices by reading/writing these special
physical addresses; such reads and writes communicate with the device hardware rather than with
RAM. Chapter 4 explains how xv6 interacts with devices.

The kernel maps all physical RAM and device registers at virtual addresses equal to the phys-
ical addresses. This is called “direct mapping,” and allows the kernel to read or write physical
address x simply by loading or storing to virtual address x. The kernel code itself is located at
KERNBASE=0x80000000 in both the virtual address space and in physical memory. When kfork
(2373) allocates user memory for the child process, the allocator returns the physical address of
that memory; kfork uses that address directly as a virtual address when it is copying the parent’s
user memory to the child.

There are a couple of kernel virtual addresses that aren’t direct-mapped:

• The trampoline page. It is mapped at the top of the virtual address space; user page tables
have this same mapping. Chapter 4 discusses the role of the trampoline page, but we see
here an interesting use case of page tables; a physical page (holding the trampoline code) is
mapped twice in the virtual address space of the kernel: once at the top of the virtual address
space and once with a direct mapping.

• The kernel stack pages. Each process has its own kernel stack, which is mapped at a high
kernel virtual address so that below it xv6 can leave an unmapped guard page. The guard
page’s PTE is invalid (i.e., PTE_V is not set), so that if the kernel overflows a kernel stack, it
will likely cause a page fault and the kernel will panic. Without a guard page an overflowing
stack would overwrite other kernel memory, resulting in incorrect operation. A panic crash
is preferable.

While the kernel uses its stacks via the high-memory mappings, each is also accessible to the
kernel through a direct-mapped address. An alternate design might have just the direct mapping,
and use the stacks at the direct-mapped address. In that arrangement, however, providing guard
pages would involve unmapping virtual addresses that would otherwise refer to physical memory,
which would then be hard to use.

The kernel maps the pages for the trampoline and the kernel text with the permissions PTE_R
and PTE_X, but not PTE_W. The kernel maps other pages with the permissions PTE_R and PTE_W,
but not PTE_X. The mappings for the guard pages are invalid. The purpose of these restricted
permissions is to help catch kernel bugs that access pages in unexpected ways, for example if
kernel code accidentally tried to write over kernel instructions.

The kernel creates a single kernel page table, used by all CPUs when they execute in the kernel.
xv6 does not modify the kernel page table after initially creating it.

35

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/memlayout.h
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L257

3.3 Code: creating an address space
Please read kernel/vm.c through the end of mappages() before proceeding.

Most of the xv6 code for manipulating address spaces and page tables resides in vm.c (1400).
The central data structure is pagetable_t, which is really a pointer to a RISC-V root page-
table page; a pagetable_t may be either the kernel page table, or one of the per-process page
tables. The central functions are walk, which finds the PTE for a virtual address, and mappages,
which installs PTEs for new mappings. Functions starting with kvm manipulate the kernel page
table; functions starting with uvm manipulate a user page table; other functions are used for both.
copyout and copyin copy data to and from user virtual addresses provided as system call
arguments; they are in vm.c because they need to explicitly translate those addresses in order to
find the corresponding physical memory.

Early in the boot sequence, main calls kvminit (1465) to create the kernel’s page table using
kvmmake (1421). This call occurs before xv6 has enabled paging on the RISC-V, so addresses
refer directly to physical memory. kvmmake first allocates a page of physical memory to hold
the root page-table page. Then it calls kvmmap to install the translations that the kernel needs.
The translations include the kernel’s instructions and data, physical memory up to PHYSTOP, and
memory ranges which are actually devices. proc_mapstacks (2132) allocates a kernel stack for
each process. It calls kvmmap to map each stack at the virtual address generated by KSTACK, which
leaves room for the invalid stack-guard pages.

kvmmap (1457) calls mappages (1556), which installs mappings into a page table for a range
of virtual addresses to a corresponding range of physical addresses. It does this separately for each
virtual address in the range, at page intervals. For each virtual address to be mapped, mappages
calls walk to find the address of the PTE for that address. It then initializes the PTE to hold
the relevant physical page number, the desired permissions (PTE_W, PTE_X, and/or PTE_R), and
PTE_V to mark the PTE as valid (1577).

walk (1497) mimics the RISC-V paging hardware as it looks up the PTE for a virtual address
(see Figure 3.2). walk descends the page table tree one level at a time, using each level’s 9 bits of
virtual address to index into the relevant page directory page. At each level it finds either the PTE
of the next level’s page directory page, or the PTE of final page (1503). If a PTE in a first or second
level page directory page isn’t valid, then the required directory page hasn’t yet been allocated; if
the alloc argument is set, walk allocates a new page-table page and puts its physical address in
the PTE. It returns the address of the PTE in the lowest layer in the tree (1513).

The above code depends on physical memory being direct-mapped into the kernel virtual ad-
dress space. For example, as walk descends levels of the page table, it pulls the (physical) address
of the next-level-down page table from a PTE (1505), and then uses that address as a virtual address
to fetch the PTE at the next level down (1503).

On each CPU, main calls kvminithart (1473) to install the kernel page table, placing the
physical address of the root page-table page into the CPU’s satp register. After this the CPU
translates addresses using the kernel page table. The kernel continues to execute correctly because
the kernel page table is direct-mapped, so that addresses refer to the same locations in RAM before
and after this change.

Each RISC-V CPU caches page table entries in a Translation Look-aside Buffer (TLB), and

36

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L66
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L22
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L33
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L58
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L146
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L167
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L98
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L104
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L114
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L106
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L104
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L74

when xv6 changes a page table, it must tell the CPU to invalidate corresponding cached TLB
entries. If it didn’t, then at some point later the TLB might use an old cached mapping, point-
ing to a physical page that in the meantime has been allocated to another process, and as a re-
sult, a process might be able to scribble on some other process’s memory. The RISC-V has an
instruction sfence.vma that flushes the current CPU’s TLB. Xv6 executes sfence.vma in
kvminithart after reloading the satp register, and in the trampoline code for uservec and
userret.

It is also necessary to issue sfence.vma before changing satp, in order to wait for comple-
tion of all outstanding loads and stores. This wait ensures that preceding updates to the page table
have completed, and ensures that preceding loads and stores use the old page table, not the new
one.

3.4 Physical memory allocation
The kernel must allocate and free physical memory at run-time for page tables, user memory,
kernel stacks, and pipe buffers.

Xv6 uses the physical memory between the end of the kernel and PHYSTOP for run-time alloca-
tion. It allocates and frees whole 4096-byte pages at a time. It keeps track of which pages are free
by threading a linked list through the pages themselves. Allocation consists of removing a page
from the linked list; freeing consists of adding the freed page to the list.

Please read kernel/kalloc.c.

3.5 Code: Physical memory allocator
The allocator resides in kalloc.c (2950). The allocator’s data structure is a free list of physi-
cal memory pages that are available for allocation. Each free page’s “next” pointer resides in a
struct run (2966). The allocator stores each free page’s run structure in the free page itself,
since there’s nothing else stored there while the page is free. The free list is protected by a spin
lock (2970-2973). The list and the lock are wrapped in a struct to make clear that the lock protects
the fields in the struct. For now, ignore the lock and the calls to acquire and release; Chapter 7
will examine locking in detail.

The function main calls kinit to initialize the allocator (2976). kinit initializes the free list
to hold every page of physical RAM between the end of the kernel and PHYSTOP. Xv6 ought to
determine how much physical memory is available by parsing configuration information provided
by the hardware. Instead xv6 assumes that the machine has 128 megabytes of RAM. kinit calls
freerange to add memory to the free list via per-page calls to kfree. A PTE can only refer to
a physical address that is aligned on a 4096-byte boundary (is a multiple of 4096), so freerange

uses PGROUNDUP to ensure that it frees only aligned physical addresses. The allocator starts with
no memory; these calls to kfree give it some to manage.

The allocator sometimes treats addresses as integers in order to perform arithmetic on them
(e.g., traversing all pages in freerange), and sometimes uses addresses as pointers to read and

37

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L17
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L21-L24
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L27

write memory (e.g., manipulating the run structure stored in each page); this dual use of addresses
is the main reason that the allocator code is full of C type-casts.

The function kfree (3005) begins by setting every byte in the memory being freed to the value
1. This will cause code that uses memory after freeing it (uses “dangling references”) to read
garbage instead of the old valid contents; hopefully that will cause such code to break faster. Then
kfree prepends the page to the free list: it casts pa to a pointer to struct run, records the old
start of the free list in r->next, and sets the free list equal to r. kalloc removes and returns the
first element in the free list.

3.6 Process address space
Each process has its own page table, and when xv6 switches between processes, it also changes
page tables. Figure 3.4 shows a process’s address space in more detail than Figure 2.3. A process’s
user address space starts at zero and in principle ends at MAXVA (0x4000000000) (0896), though
in practice only a small fraction of this is mapped to physical memory.

A process’s address space consists of pages that contain the text of the program (which xv6
maps with the permissions PTE_R, PTE_X, and PTE_U), pages that contain the pre-initialized data
of the program, a page for the stack, and pages for the heap. Xv6 maps the data, stack, and heap
with the permissions PTE_R, PTE_W, and PTE_U.

Using permissions within a user address space is a common technique to harden a user process.
If the text were mapped with PTE_W, then a process could accidentally modify its own program;
for example, a programming error may cause the program to write to a null pointer, modifying
instructions at address 0, and then continue running, perhaps creating more havoc. To detect such
errors immediately, xv6 maps the text without PTE_W; if a program accidentally attempts to store
to address 0, the hardware will refuse to execute the store and raises a page fault (see Chapter 4).
The kernel then kills the process and prints out an informative message so that the developer can
track down the problem.

Similarly, by mapping data without PTE_X, a user program cannot accidentally jump to an
address in the program’s data and start executing at that address.

In the real world, hardening a process by setting permissions carefully also aids in defending
against security attacks. An adversary may feed carefully-constructed input to a program (e.g., a
Web server) that triggers a bug in the program in the hope of turning that bug into an exploit [14].
Setting permissions carefully and other techniques, such as randomizing of the layout of the user
address space, make such attacks harder.

The stack is a single page, and is shown with the initial contents as created by the exec system
call. Strings containing the command-line arguments, as well as an array of pointers to them, are
at the very top of the stack. Just under that are values that allow a program to start at main as if the
function main(argc, argv) had just been called.

To detect a user stack overflowing the allocated stack memory, xv6 places an inaccessible guard
page right below the stack by clearing the PTE_U flag. If the user stack overflows and the process
tries to use an address below the stack, the hardware will generate a page-fault exception because
the guard page is inaccessible to a program running in user mode. A real-world operating system

38

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L47
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/riscv.h#L377

Figure 3.4: A process’s user address space, with its initial stack.

might instead automatically allocate more memory for the user stack when it overflows.
We see here a few nice examples of use of page tables. First, different processes’ page tables

translate user addresses to different pages of physical memory, so that each process has private user
memory. Second, each process sees its memory as having contiguous virtual addresses starting at
zero, while the process’s physical memory can be non-contiguous. Third, the kernel maps a page
with trampoline code at the top of the user address space (without PTE_U), thus a single page of
physical memory shows up in all address spaces, but can be used only by the kernel.

3.7 Code: exec

Please read kernel/exec.c and kernel/vm.c starting at uvmcreate().
exec is a system call that replaces a process’s user address space with data read from a file,

called a binary or executable file. A binary is typically the output of the compiler and linker, and
holds machine instructions and program data. kexec (6426), the kernel’s internal implementation
of exec, opens the named binary path using namei (6440), which is explained in Chapter 10.
Then, it reads the ELF header. Xv6 binaries are formatted in the widely-used ELF format, de-
fined in (0950). An ELF binary consists of an ELF header, struct elfhdr (0955), followed by a
sequence of program section headers, struct proghdr (0974). Each proghdr describes a sec-
tion of the application that must be loaded into memory; xv6 programs have two program section

39

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L27
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L41
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/elf.h
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/elf.h#L6
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/elf.h#L25

headers: one for instructions and one for data.
The first step is a quick check that the file probably contains an ELF binary. An ELF binary

starts with the four-byte “magic number” 0x7F, ‘E’, ‘L’, ‘F’, or ELF_MAGIC (0952). If the ELF
header has the right magic number, kexec assumes that the binary is well-formed.

kexec allocates a new page table with no user mappings with proc_pagetable (6454), allo-
cates memory for each ELF segment with uvmalloc (6470), and loads each segment into memory
with loadseg (6409). loadseg uses walkaddr to find the physical address of the allocated mem-
ory at which to write each page of the ELF segment, and readi to read from the file.

The program section header for /init, the first user program created with exec, looks like
this:

objdump -p user/_init

user/_init: file format elf64-little

Program Header:
0x70000003 off 0x0000000000006bb0 vaddr 0x0000000000000000

paddr 0x0000000000000000 align 2**0
filesz 0x000000000000004a memsz 0x0000000000000000 flags r--

LOAD off 0x0000000000001000 vaddr 0x0000000000000000
paddr 0x0000000000000000 align 2**12

filesz 0x0000000000001000 memsz 0x0000000000001000 flags r-x
LOAD off 0x0000000000002000 vaddr 0x0000000000001000

paddr 0x0000000000001000 align 2**12
filesz 0x0000000000000010 memsz 0x0000000000000030 flags rw-

STACK off 0x0000000000000000 vaddr 0x0000000000000000
paddr 0x0000000000000000 align 2**4

filesz 0x0000000000000000 memsz 0x0000000000000000 flags rw-

We see that the text segment should be loaded at virtual address 0x0 in memory (without write
permissions) from content at offset 0x1000 in the file. We also see that the data should be loaded
at address 0x1000, which is at a page boundary, and without executable permissions.

A program section header’s filesz may be less than the memsz, indicating that the gap be-
tween them should be filled with zeroes (for C global variables) rather than read from the file. For
/init, the data filesz is 0x10 bytes and memsz is 0x30 bytes, and thus uvmalloc allocates
enough physical memory to hold 0x30 bytes, but reads only 0x10 bytes from the file /init.

Now kexec allocates and initializes the user stack. It allocates just one stack page. kexec
copies the argument strings to the top of the stack one at a time, recording the pointers to them
in ustack. It places a null pointer at the end of what will be the argv list passed to main. The
values for argc and argv are passed to main through the system-call return path: argc is passed
via the system call return value, which goes in a0, and argv is passed through the a1 entry of the
process’s trapframe.

kexec places an inaccessible page just below the stack page, so that programs that try to use
more than one page will fault. This inaccessible page also allows kexec to deal with arguments
that are too large; in that situation, the copyout (1754) function that kexec uses to copy arguments
to the stack will notice that the destination page is not accessible, and will return -1.

40

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/elf.h#L3
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L55
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L71
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L10
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L343

During the preparation of the new memory image, if kexec detects an error like an invalid
program segment, it jumps to the label bad, frees the new image, and returns -1. kexec must wait
to free the old image until it is sure that the system call will succeed: if the old image is gone, the
system call cannot return -1 to it. The only error cases in kexec happen during the creation of the
image. Once the image is complete, kexec can commit to the new page table (6531) and free the
old one (6535).

The exec system call loads bytes from the ELF file into memory at addresses specified by the
ELF file. Users or processes can place whatever addresses they want into an ELF file. Thus exec
is risky, because the addresses in the ELF file may refer to the kernel, accidentally or on purpose.
The consequences for an unwary kernel could range from a crash to a malicious subversion of
the kernel’s isolation mechanisms (i.e., a security exploit). Xv6 performs a number of checks to
avoid these risks. For example if(ph.vaddr + ph.memsz < ph.vaddr) checks for whether
the sum overflows a 64-bit integer. The danger is that a user could construct an ELF binary with
a ph.vaddr that points to a user-chosen address, and ph.memsz large enough that the sum over-
flows to 0x1000, which will look like a valid value. In an older version of xv6 in which the user
address space also contained the kernel (but not readable/writable in user mode), the user could
choose an address that corresponded to kernel memory and would thus copy data from the ELF
binary into the kernel. In the RISC-V version of xv6 this cannot happen, because the kernel has
its own separate page table; loadseg loads into the process’s page table, not in the kernel’s page
table.

It is easy for a kernel developer to omit a crucial check, and real-world kernels have a long
history of missing checks whose absence can be exploited by user programs to obtain kernel priv-
ileges. It is likely that xv6 doesn’t do a complete job of validating user-level data supplied to the
kernel, which a malicious user program might be able to exploit to circumvent xv6’s isolation.

3.8 Real world
Like most operating systems, xv6 uses the paging hardware for memory protection and mapping.
Most operating systems make far more sophisticated use of paging than xv6 by combining paging
and page-fault exceptions, which we will discuss in Chapter 4.

Xv6 is simplified by the kernel’s use of a direct map between virtual and physical addresses, and
by its assumption that there is physical RAM at address 0x80000000, where the kernel expects to
be loaded. This works with QEMU, but on real hardware it turns out to be a bad idea; real hardware
places RAM and devices at unpredictable physical addresses, so that (for example) there might be
no RAM at 0x80000000, where xv6 expect to be able to store the kernel. More serious kernel
designs exploit the page table to turn arbitrary hardware physical memory layouts into predictable
kernel virtual address layouts.

RISC-V supports protection at the level of physical addresses, but xv6 doesn’t use that feature.
On machines with lots of memory it might make sense to use RISC-V’s support for “super

pages.” Small pages make sense when physical memory is small, to allow allocation and page-out
to disk with fine granularity. For example, if a program uses only 8 kilobytes of memory, giving
it a whole 4-megabyte super-page of physical memory is wasteful. Larger pages make sense on

41

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L132
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L136

machines with lots of RAM, and may reduce overhead for page-table manipulation.
To avoid having to flush the complete TLB when changing page tables, RISC-V CPUs may

support address space identifiers (ASIDs) [3]. The kernel can then flush just the TLB entries for a
particular address space. Xv6 does not use this feature.

The xv6 kernel’s lack of a malloc-like allocator that can provide memory for small objects
prevents the kernel from using sophisticated data structures that would require dynamic allocation.
A more elaborate kernel would likely allocate many different sizes of small blocks, rather than (as
in xv6) just 4096-byte blocks; a real kernel allocator would need to handle small allocations as
well as large ones.

Memory allocation is a perennial hot topic, the basic problems being efficient use of limited
memory and preparing for unknown future requests [9]. Today people care more about speed than
space efficiency.

3.9 Exercises
1. Parse RISC-V’s device tree to find the amount of physical memory the computer has.

2. The functions copyin and copyinstr walk the user page table in software. Set up
the kernel page table so that the kernel has the user program mapped, and copyin and
copyinstr can use memcpy to copy system call arguments into kernel space, relying on
the hardware to do the page table walk.

3. Modify xv6 to use super pages for the kernel.

4. Unix implementations of exec traditionally include special handling for shell scripts. If the
file to execute begins with the text #!, then the first line is taken to be a program to run to
interpret the file. For example, if exec is called to run myprog arg1 and myprog ’s first
line is #!/interp, then exec runs /interp with command line /interp myprog arg1.
Implement support for this convention in xv6.

5. Implement address space layout randomization for the kernel.

42

Chapter 4

Traps and system calls

There are three kinds of event which cause the CPU to set aside ordinary execution of instructions
and force a transfer of control to special kernel code that handles the event. One situation is a
system call, when a user program executes the ecall instruction to ask the kernel to do something
for it. Another situation is an exception: an instruction (user or kernel) does something illegal, such
as load from an invalid virtual address. The third situation is a device interrupt, when a device
signals that it needs attention, for example when the disk hardware finishes a read or write request.

This book uses trap as a generic term for these situations. Typically whatever code was execut-
ing at the time of the trap will later need to resume, and shouldn’t need to be aware that anything
special happened. That is, we often want traps to be transparent; this is particularly important for
device interrupts, which the interrupted code typically doesn’t expect. A trap forces a transfer of
control into the kernel; the kernel saves registers and other state so that execution can be resumed;
the kernel executes appropriate handler code (e.g., a system call implementation or device driver);
the kernel restores the saved state and returns from the trap; and the original code resumes where
it left off.

Xv6 handles all traps in the kernel; traps are not delivered to user code. Handling traps in the
kernel is natural for system calls. It makes sense for interrupts since isolation demands that only the
kernel be allowed to use devices, and because the kernel is able to share devices among multiple
processes. It also makes sense for exceptions since the kernel may be able to handle the exception
from user space (for an example see Chapter 5) or respond by killing the offending program.

Xv6 trap handling proceeds in four stages: hardware actions taken by the RISC-V CPU, some
assembly instructions that prepare the way for kernel C code, a C function that decides what to do
with the trap, and the system call or device-driver service routine. While commonality among the
three trap types suggests that a kernel could handle all traps with a single code path, it turns out to
be convenient to have separate code for two distinct cases: traps from user space, and traps from
kernel space. Kernel code (assembler or C) that processes a trap is often called a handler; the first
handler instructions are usually written in assembler (rather than C) and are sometimes called a
vector.

Before proceeding, please read kernel/trampoline.S, and usertrap() and prepare_return()
in kernel/trap.c.

43

4.1 RISC-V trap machinery
Each RISC-V CPU has a set of hardware control registers that the kernel writes to tell the CPU
how to handle traps, and that the kernel can read to find out about a trap that has occurred. The
RISC-V documents contain the full story [3]. riscv.h (0500) contains definitions that xv6 uses.
Here’s an outline of the most important registers:

• stvec: The kernel writes the address of its trap handler code here; the RISC-V jumps to the
address in stvec to handle a trap.

• sepc: When a trap occurs, RISC-V saves the program counter here (since the pc is then
overwritten with the value in stvec). The sret (return from trap) instruction copies sepc
to the pc. The kernel can write sepc to control where sret goes.

• scause: RISC-V puts a number here that describes the reason for the trap.

• sscratch: The kernel trap handler code uses sscratch to help it avoid overwriting user
registers before saving them.

• sstatus: The SIE bit in sstatus controls whether device interrupts are enabled. If the
kernel clears SIE, the RISC-V will defer device interrupts until the kernel sets SIE. The SPP
bit indicates whether a trap came from user mode or supervisor mode, and controls to what
mode sret returns.

The above registers can only be accessed in supervisor mode (i.e., by the kernel); the CPU
prevents user code from reading or writing them.

Each CPU on a multi-core chip has its own set of these registers, and more than one CPU may
be handling a trap at any given time.

When it forces a trap, the RISC-V hardware does the following:

1. If the trap is a device interrupt, and the sstatus SIE bit is clear, don’t do any of the
following.

2. Disable interrupts by clearing the SIE bit in sstatus.

3. Copy the pc to sepc.

4. Save the current mode (user or supervisor) in the SPP bit in sstatus.

5. Set scause to a number indicating the trap’s cause.

6. Set the mode to supervisor.

7. Copy stvec to the pc.

8. Start executing at the new pc.

44

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/riscv.h

User code

trampoline
uservec

usertrap

syscall
or device driver

User code

trampoline
userret

Figure 4.1: Outline of how a trap from user code is handled.

The CPU doesn’t switch to the kernel page table, doesn’t switch to a stack in the kernel, and
doesn’t save any registers other than the pc. Kernel software must perform these tasks. One reason
that the CPU does minimal work during a trap is to provide flexibility to software; for example,
some operating systems omit a page table switch in some situations to increase trap performance.

It’s worth thinking about whether any of the steps listed above could be omitted, perhaps in
search of faster traps. Though there are situations in which a simpler sequence can work, many
of the steps would be dangerous to omit in general. For example, suppose that the CPU didn’t
switch program counters. Then a trap from user space could switch to supervisor mode while still
running user instructions. Those user instructions could break user/kernel isolation, for example by
modifying the satp register to point to a page table that allowed accessing all of physical memory.
It is thus important that the CPU switch to a kernel-specified instruction address, namely stvec.

4.2 Traps from user space

Xv6 handles traps differently depending on whether the trap occurs while executing in the kernel
or in user code. Here is the story for traps from user code; Section 4.5 describes traps from kernel
code.

A trap may occur while executing in user space if the user program makes a system call (ecall
instruction), or does something illegal, or if a device interrupts. As shown in Figure 4.1, the high-
level path of a trap from user space is uservec (3071), then usertrap (3337); and when the
kernel is ready to return, usertrap returns to userret (3151) which executes sret to user
space.

A major constraint on the design of xv6’s trap handling is the fact that the RISC-V hardware
does not switch page tables when it forces a trap. This means that the trap handler address in

45

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trampoline.S#L22
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L38
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trampoline.S#L101

stvec must have a valid mapping in the user page table, since that’s the page table in force when
the trap handling code starts executing. Furthermore, xv6’s trap handling code needs to switch to
the kernel page table; in order to be able to continue executing after that switch, the kernel page
table must also have a mapping for the handler pointed to by stvec.

Xv6 satisfies these requirements using a trampoline page. This page contains uservec, the
xv6 trap handling code that stvec points to. The trampoline page is mapped in every process’s
page table at virtual address 0x3ffffff000 (called TRAMPOLINE), which is the last page in
the virtual address space so that it will be above memory that programs use for themselves. The
trampoline page is mapped at the same virtual address in the kernel page table. See Figure 2.3 and
Figure 3.3. Because the trampoline page is mapped in the user page table, traps can start executing
there in supervisor mode. Because the trampoline page is mapped at the same address in the kernel
address space, the trap handler can continue to execute after it switches to the kernel page table.

The code for the uservec trap handler is in trampoline.S (3071). When uservec starts,
all 32 registers contain values owned by the interrupted user code. These 32 values need to be saved
somewhere in memory, so that later on the kernel can restore them before returning to user space.
Storing to memory requires use of a register to hold the store’s destination address, but at this
point there are no general-purpose registers available! Luckily RISC-V provides a helping hand in
the form of the sscratch register. The csrw instruction at the start of uservec saves a0 in
sscratch. Now uservec has one register (a0) to play with.

uservec’s next task is to save the 32 user registers. The kernel allocates, for each process, a
page of memory for a trapframe structure that (among other things) has space to save the 32 user
registers (1992). Because satp still refers to the user page table, uservec needs the trapframe
to be mapped in the user address space. Xv6 maps each process’s trapframe at virtual address
TRAPFRAME (0x3fffffe000) in that process’s user page table; one page below TRAMPOLINE.
Each process’s p->trapframe contains a kernel virtual address for the process’s trapframe.

uservec sets register a0 to address TRAPFRAME and saves all the user registers there. Then
it retrieves the user a0 from sscratch and saves it in the trapframe.

The kernel previously initialized the trapframe to contain some values useful to uservec:
the address of the current process’s kernel stack, the current CPU’s hartid, the address of the
usertrap function, and the address of the kernel page table. uservec retrieves these values,
switches satp to the kernel page table, and jumps to usertrap, a C function.

The job of usertrap is to determine the cause of the trap, process it, and return (3337). It
first changes stvec so that a trap while in the kernel will be handled by kernelvec rather
than uservec. It saves the sepc register (the saved user program counter) for future use when
returning back to user space. If the trap is a system call, usertrap calls syscall to handle
it; if a device interrupt, devintr; if a page fault, vmfault; otherwise it’s an exception (e.g.,
use of an invalid address), and the kernel kills the faulting process. The system call path adds
four to the saved user program counter because RISC-V, in the case of a system call, leaves the
program pointer pointing to the ecall instruction but user code needs to resume executing at the
subsequent instruction. usertrap checks if the process has been killed or should yield the CPU
(if this trap is a timer interrupt).

The first step in returning to user space is the call to prepare_return (3404). This function

46

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trampoline.S#L22
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.h#L43
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L38
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L100

sets up the RISC-V control registers to prepare for a future trap from user space: setting stvec to
uservec and preparing the trapframe fields that uservec relies on. prepare_return sets
sepc to the previously saved user program counter. Finally, usertrap returns back to userret
in the trampoline page (3151), passing back a pointer to the user page table in a0.

userret switches satp to the process’s user page table. Recall that the user page table maps
both the trampoline page and TRAPFRAME, but nothing else from the kernel. The trampoline
page mapping at the same virtual address in user and kernel page tables allows userret to keep
executing after changing satp. From this point on, the only data userret can use is the register
contents and the content of the trapframe. userret loads the TRAPFRAME address into a0,
restores saved user registers from the trapframe via a0, restores the saved user a0, and executes
sret to return to user space.

uservec and userret are written in assembly language because it is difficult to write C
code to save or restore all the registers or survive switching page tables.

4.3 Code: Calling system calls
User programs call library functions in order to make system calls. For example, the shell displays
a prompt with this function call (in user/sh.c):

write(2, "$ ", 2);

Here’s the library function, in user/usys.S:

write:
li a7, SYS_write
ecall
ret

The code that the C compiler generates for the function call loads the three arguments into
registers a0, a1, and a2. Then the write() function loads the system call number, SYS_write
(16), into a7. The kernel will look at those registers to find out what system call is intended, and
what the arguments are. The ecall instruction traps from user space into the kernel and causes
uservec, usertrap, and then syscall to execute.

At this point, please read kernel/syscall.c, sys_write() in kernel/sysfile.c,
and copyout(), copyin(), and copyinstr() in kernel/vm.c.

syscall (3731) retrieves the system call number from the saved a7 in the trapframe and uses
it to index into syscalls (3706). For our example, a7 contains SYS_write (3566), resulting in
a call to the system call implementation function sys_write.

When sys_write returns, syscall records its return value in p->trapframe->a0. This
will cause the original user-space call to write() to return that value, since the C calling conven-
tion on RISC-V places return values in a0. System calls conventionally return negative numbers
to indicate errors, and zero or positive numbers for success.

47

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trampoline.S#L101
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.c#L132
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.c#L107
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.h#L17

4.4 Code: System call arguments
System call arguments start out in the user registers, and are then moved to the trap frame by the
kernel trap code. The kernel functions argint, argaddr, and argfd retrieve the n ’th system call
argument from the trap frame as an integer, pointer, or a file descriptor.

Some system calls pass pointers as arguments, and the kernel must use those pointers to read or
write user memory. The write system call, for example, passes the kernel a user-space pointer to
the data to be written. Such pointers pose two challenges. First, the user program may be buggy or
malicious, and may pass the kernel an invalid pointer or a pointer intended to trick the kernel into
accessing kernel memory instead of user memory. Second, the xv6 kernel page table mappings are
not the same as the user page table mappings, so the kernel cannot use ordinary instructions to load
or store from user-supplied addresses.

The kernel implements functions that safely transfer data to and from user-supplied addresses.
fetchstr is an example (3624). File system calls such as exec use fetchstr to retrieve string
file-name arguments from user space. fetchstr calls copyinstr to do the hard work.

copyinstr (1833) copies up to max bytes to dst from virtual address srcva in the user page
table pagetable. Since pagetable is not the current page table, copyinstr uses walkaddr
(which calls walk) to look up srcva in pagetable, yielding physical address pa0. The kernel’s
page table maps all of physical RAM at virtual addresses that are equal to the RAM’s physical
address. This allows copyinstr to directly copy string bytes from pa0 to dst. walkaddr
(1520) checks that the user-supplied virtual address is part of the process’s user address space, so
programs cannot trick the kernel into reading other memory. A similar function, copyout, copies
data from the kernel to a user-supplied address.

4.5 Traps from kernel space
Please read kernel/kernelvec.S, and kerneltrap() in kernel/trap.c.

Xv6 handles traps from kernel code in a different way than traps from user code. When en-
tering the kernel, usertrap points stvec to the assembly code at kernelvec (3211). Since
kernelvec only executes if xv6 was already in the kernel, kernelvec can rely on satp being
set to the kernel page table, and on the stack pointer referring to a valid kernel stack. kernelvec
pushes all 32 registers onto the current stack, from which it will later restore them so that the
interrupted kernel code can resume without disturbance.

kernelvec saves the registers on the stack of the interrupted kernel thread, which makes
sense because the register values belong to that thread. This is particularly important if the trap
causes a switch to a different thread – in that case the trap will actually return from the stack of the
new thread, leaving the interrupted thread’s saved registers safely on its stack.

kernelvec jumps to kerneltrap (3453) after saving registers. kerneltrap is prepared
for just one type of trap: device interrupts. It calls devintr (3506) to handle them. If the trap isn’t
a device interrupt, it must be an exception, such as kernel code trying to use an invalid pointer.
This could only be caused by a bug in the kernel code. The kernel does not have a way to recover
in this situation, so it calls panic(), which prints an error message and then halts.

48

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.c#L25
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L410
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L121
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kernelvec.S#L12
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L136
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L186

If kerneltrap was called due to a timer interrupt, and a process’s kernel thread is running
(as opposed to a scheduler thread), kerneltrap calls yield to give other threads a chance to
run. At some point one of those threads will yield, and let our thread and its kerneltrap resume
again. Chapter 8 explains what happens in yield.

When kerneltrap’s work is done, it needs to return to whatever code was interrupted
by the trap. Because a yield may have disturbed sepc and the previous mode in sstatus,
kerneltrap saves them when it starts. It now restores those control registers and returns to
kernelvec (3237). kernelvec pops the saved registers from the stack and executes sret,
which copies sepc to pc and resumes the interrupted kernel code.

Xv6 sets a CPU’s stvec to kernelvec when that CPU enters the kernel from user space;
you can see this in usertrap (3346). But there’s a window of time when the kernel has started
executing but stvec is still set to uservec, and it’s crucial that no device interrupt occur during
that window. Luckily the RISC-V always disables interrupts when it starts to take a trap, and
usertrap doesn’t enable them again until after it sets stvec.

4.6 Real world
The need for trampoline pages could be eliminated if kernel memory were mapped into every
process’s user page table (with PTE_U clear). That would also eliminate the need for a page table
switch when trapping from user space into the kernel. That in turn would allow system call im-
plementations in the kernel to take advantage of the current process’s user memory being mapped,
allowing kernel code to directly dereference user pointers. Many operating systems have used
these ideas to increase efficiency. Xv6 avoids them in order to reduce the chances of security bugs
in the kernel due to inadvertent use of user pointers, and to reduce some complexity that would be
required to ensure that user and kernel virtual addresses don’t overlap.

4.7 Exercises
1. Could some or all of the code in trampoline.S and kernelvec.S be written in C

rather than assembler?

2. Is there a way to eliminate the special TRAPFRAME page mapping in every user address
space? For example, could uservec be modified to simply push the 32 user registers onto
the kernel stack, or store them in the proc structure?

3. Could xv6 be modified to eliminate the special TRAMPOLINE page mapping?

49

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kernelvec.S#L38
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L47

50

Chapter 5

Page faults

The RISC-V CPU raises a page-fault exception when a virtual address is used that has no mapping
in the page table, or has a mapping whose PTE_V flag is clear, or a mapping whose permission bits
(PTE_R, PTE_W, PTE_X, PTE_U) forbid the operation being attempted. RISC-V distinguishes three
kinds of page fault: load page faults (caused by load instructions), store page faults (caused by
store instructions), and instruction page faults (caused by fetches of instructions to be executed).
The scause register indicates the type of the page fault and the stval register contains the address
that couldn’t be translated.

The combination of page tables and page faults is a powerful tool. Page tables give the kernel
a level of indirection between virtual and physical addresses, so that the kernel can control the
structure and content of address spaces. Page faults allow the kernel to intercept loads and stores
and, by modifying the page table, specify on the fly what data those references refer to. The kernel
can use these capabilities to increase efficiency: for example, copy-on-write fork allows the kernel
to transparently share memory between parent and child, avoiding the cost of copying pages that
neither write. Application programmers can also benefit. One possibility is memory-mapped files,
where the kernel uses paging to cause a file’s content to appear in an application’s address space,
transparently reading file blocks in response to page faults. Another is lazy memory allocation,
which allows a program to ask for a huge virtual address space, but only to pay the cost of allocating
physical memory for the pages the program actually reads and writes. xv6 uses page faults for only
one purpose: lazy allocation.

Before proceeding, please read the functions sys_sbrk() in kernel/sysproc.c, and
vmfault in kernel/vm.c. Search for calls to vmfault in kernel/trap.c and kernel/vm.c.

5.1 Lazy allocation

xv6’s lazy allocation has two parts. First, when an application asks for memory by calling sbrk

with the flag SBRK_LAZY, the kernel notes the increase in size, but does not allocate physical
memory and does not create PTEs for the new range of virtual addresses. Second, on a page fault
on one of those new addresses, the kernel allocates a page of physical memory and maps it into the
page table. The kernel implements lazy allocation transparently to applications: no modifications

51

to applications are necessary for them to benefit.
Lazy allocation is convenient for applications because they don’t have to accurately predict

how much memory they will need. For example, an application may process input, but not know
in advance how large the input will be. With lazy allocations an application can ask for memory
for the worst case, but not have to pay for this worst case: the kernel doesn’t have to do any work
at all for pages that the application never uses.

Furthermore, if the application is asking to grow the address space by a lot, then sbrk without
lazy allocation is expensive: if an application asks for a gigabyte of memory, the kernel has to
allocate and zero 262,144 4096-byte physical pages. Lazy allocation allows this cost to be spread
over time. On the other hand, lazy allocation incurs the extra overhead of page faults, which involve
a user/kernel transition. Operating systems can reduce this cost by allocating a batch of consecutive
pages per page fault instead of one page and by specializing the kernel entry/exit code for such
page-faults (though xv6 does neither).

On the other hand, when taking a page fault for a lazily-allocated page, the kernel may find
that it has not free memory to allocate. In this case, the kernel has no easy way of returning an out-
of-memory error to the application and instead kills the application. For applications that prefer an
error on a failed allocation, xv6 allows an application to allocate memory eagerly by calling sbrk

with the flag SBRK_EAGER.

5.2 Code
The system call sbrk(n) grows (or shrinks if n is negative) a process’s memory size by n bytes,
and returns the start of the newly allocated region (i.e., the old size). The kernel implementation is
sys_sbrk (3801).

If the application specifies SBRK_EAGER, the system call is implemented by the function growproc
(2353). growproc calls uvmalloc. uvmalloc (1628) allocates physical memory with kalloc,
zeros the allocated memory, and adds PTEs to the user page table with mappages.

If the applications allocates memory lazily, sys_sbrk just increments the process’s size (myproc()->sz)
by n and returns the old size; it does not allocate physical memory or add PTEs to the process’s
page table.

When a process loads or stores to a virtual address that lacks a valid page-table mapping, the
CPU will raise page-fault exception. usertrap checks for this case (3372) and calls vmfault
(1879) to handle the page fault. vmfault checks that the faulting address is within the region pre-
viously granted by sbrk, allocates a page of physical memory with kalloc, zeros the allocated
page, and adds a PTE to the user page table with mappages. Xv6 sets the PTE_W, PTE_R, PTE_U,
and PTE_V flags in the PTE for the new page. Then, usertrap resumes the process at the instruc-
tion that caused the fault. Because the PTE is now valid, the re-executed load or store instruction
will execute without a fault.

If an application frees memory using sbrk, sys_sbrk calls shrinkproc, which calls uvmdealloc.
The real work is done by uvmunmap (1604), which uses walk to find PTEs. Since some pages may
never have been used by the process and thus never have been allocated by vmfault, uvmunmap
skips PTEs without the PTE_V flag. If a PTE mapping is valid, uvmunmap calls kfree to free

52

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysproc.c#L40
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L237
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L217
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L73
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L453
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L193

the physical memory it refers to.
Note that Xv6 uses a process’s page table not just to tell the hardware how to map user virtual

addresses, but also as the only record of which physical memory pages are allocated to that process.
That is the reason why freeing user memory (in uvmunmap) requires examination of the user page
table.

5.3 Real world: Copy-On-Write (COW) fork
Many kernels (though not xv6) use page faults to implement copy-on-write (COW) fork. The fork
system call promises that the child sees memory whose initial content is the same as the parent’s
memory at the time of the fork. One way to implement this is to copy the entire memory of the
parent to newly allocated physical memory for the child; this is what xv6 does. Copying can be
slow, and it would be more efficient if the child could share the parent’s physical memory. A
straightforward implementation of this would not work, however, since it would cause the parent
and child to disrupt each other’s execution with their writes to the shared stack and heap.

Copy-on-write fork causes parent and child to safely share physical memory by appropriate
use of page-table permissions and page faults. The basic plan is for the parent and child to initially
share all physical pages, but for each to map them read-only (with the PTE_W flag clear). Parent
and child can then read from the shared physical memory. If either writes a shared page, the RISC-
V CPU raises a page-fault exception. A kernel supporting COW would respond by allocating a
new page of physical memory and copying the shared page into that new page. Then kernel would
change the relevant PTE in the faulting process’s page table to point to the copy and to allow
writes as well as reads, and then resume the faulting process at the instruction that caused the fault.
Because the PTE now allows writes, the re-executed store instruction will execute without a fault,
and will modify a private copy of the page rather than the shared page.

Copy-on-write requires book-keeping to help decide when physical pages can be freed, since
each page can be referenced by a varying number of page tables depending on the history of forks,
page faults, execs, and exits. This book-keeping allows an important optimization: if a process
incurs a store page fault and the physical page is only referred to from that process’s page table, no
copy is needed.

Copy-on-write makes fork faster, since fork need not copy memory. Some of the memory
will have to be copied later, when written, but it’s often the case that most of the memory never
has to be copied. A common example is fork followed by exec: a few pages may be written after
the fork, but then the child’s exec releases the bulk of the memory inherited from the parent.
Copy-on-write fork eliminates the need to ever copy this memory. Furthermore, COW fork is
transparent: no modifications to applications are necessary for them to benefit.

5.4 Real world: Demand paging
Yet another widely-used feature that exploits page faults is demand paging. In the exec system
call, xv6 loads all of an application’s text and data into memory before starting the application.

53

Since applications can be large and reading from disk takes time, this startup cost can be noticeable
to users. To decrease startup time, a modern kernel doesn’t initially load the executable file into
memory, but just creates the user page table with all PTEs marked invalid. The kernel starts the
program running; each time the program uses a page for the first time, a page fault occurs, and
in response the kernel reads the content of the page from disk and maps it into the user address
space. Like COW fork and lazy allocation, the kernel can implement this feature transparently to
applications.

The programs running on a computer may need more memory than the computer has RAM.
To cope gracefully, the operating system may implement paging to disk. The idea is to store only
a fraction of user pages in RAM, and to store the rest on disk in a paging area. The kernel marks
PTEs that correspond to memory stored in the paging area (and thus not in RAM) as invalid. If an
application tries to use one of the pages that has been paged out to disk, the application will incur
a page fault, and the page must be paged in: the kernel trap handler will allocate a page of physical
RAM, read the page from disk into the RAM, and modify the relevant PTE to point to the RAM.

What happens if a page needs to be paged in, but there is no free physical RAM? In that case,
the kernel must first free a physical page by paging it out or evicting it to the paging area on disk,
and marking the PTEs referring to that physical page as invalid. Eviction is expensive, so paging
performs best if it’s infrequent: if applications use only a subset of their memory pages and the
union of the subsets fits in RAM. This property is often referred to as having good locality of
reference. As with many virtual memory techniques, kernels usually implement paging to disk in
a way that’s transparent to applications.

Computers often operate with little or no free physical memory, regardless of how much RAM
the hardware provides. For example, cloud providers multiplex many customers on a single ma-
chine to use their hardware cost-effectively. As another example, users run many applications on
smart phones in a small amount of physical memory. In such settings allocating a page may require
first evicting an existing page. Thus, when free physical memory is scarce, allocation is expensive.

Lazy allocation and demand paging are particularly advantageous when free memory is scarce
and programs actively use only a fraction of their allocated memory. These techniques can also
avoid the work wasted when a page is allocated or loaded but either never used or evicted before it
can be used.

5.5 Real world: Memory-mapped files
Other features that combine paging and page-fault exceptions include automatically extending
stacks and memory-mapped files, which are files that a program maps into its address space using
the mmap system call so that the program can read and write them using load and store instructions.

5.6 Exercises
1. Write a user program that grows its address space by one byte by calling sbrk(1). Run

the program and investigate the page table for the program before the call to sbrk and after

54

the call to sbrk. How much space has the kernel allocated? What does the PTE for the new
memory contain?

2. Implement COW fork.

3. Implement mmap.

55

56

Chapter 6

Interrupts and device drivers

A driver is the code in an operating system that manages a particular device: it configures the device
hardware, tells the device to perform operations, handles the resulting interrupts, and interacts with
processes using the device. Driver code can be tricky because a driver executes concurrently with
the device, and often concurrently with processes using the device. In addition, the driver must
understand the device’s hardware interface, which can be complex and poorly documented.

Devices that need attention from the operating system can usually be configured to generate
interrupts, which are one type of trap. The kernel trap handling code recognizes when a device
has raised an interrupt and calls the driver’s interrupt handler; in xv6, this dispatch happens in
devintr (3506).

Many device drivers execute code in two contexts: a top half that runs in a process’s kernel
thread, and a bottom half that executes at interrupt time. The top half is called via system calls
such as read and write that want the device to perform I/O. This code may ask the hardware
to start an operation (e.g., ask the disk to read a block); then the code waits for the operation
to complete. Eventually the device completes the operation and raises an interrupt. The driver’s
interrupt handler, acting as the bottom half, figures out what operation has completed, wakes up a
waiting process if appropriate, and tells the hardware to start work on the next operation, if any.

6.1 Code: Console input
The console driver (6950) is a simple illustration of driver structure. The console driver accepts
characters typed by a human, via the UART serial-port hardware attached to the RISC-V. The
console driver accumulates a line of input at a time, processing special input characters such as
backspace and control-u. User processes, such as the shell, use the read system call to fetch lines
of input from the console. When you type input to xv6 in QEMU, your keystrokes are delivered to
xv6 by way of QEMU’s simulated UART hardware.

The UART hardware that the driver talks to is a 16550 chip [13] emulated by QEMU. On a real
computer, a 16550 would manage an RS232 serial link connecting to a terminal or other computer.
When running QEMU, it’s connected to your keyboard and display.

The UART hardware appears to software as a set of memory-mapped control registers. That

57

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L186
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/console.c

is, there are some physical addresses that are connected to the UART device, so that loads and
stores interact with the device hardware rather than RAM. The memory-mapped addresses for
the UART start at 0x10000000, or UART0 (0220). There are a handful of UART control registers,
each the width of a byte. Their offsets from UART0 are defined in (7221). For example, the LSR
register contains bits that indicate whether input characters are waiting to be read by the driver.
These characters (if any) are available for reading from the RHR register. Each time one is read,
the UART hardware deletes it from an internal FIFO of waiting characters, and clears the “ready”
bit in LSR when the FIFO is empty. To transmit, the driver writes a byte to the THR register, which
causes the UART to append the byte to a FIFO of bytes that the UART will send on the RS232
serial link. The UART transmit and receive hardware are largely independent of each other.

Xv6’s main calls consoleinit (7154) to initialize the UART hardware. This code config-
ures the UART to generate a receive interrupt when the UART receives each byte of input, and a
transmit complete interrupt each time the UART finishes sending a byte of output (7251).

The xv6 shell reads from the console by way of a file descriptor opened by init.c (7768).
Calls to the read system call make their way through the kernel to consoleread (7040).
consoleread waits for input to arrive (via interrupts) and be buffered in cons.buf, copies
the input to user space, and (after a whole line has arrived) returns to the user process. If the user
hasn’t typed a full line yet, any reading processes will wait in the sleep call (7056) (Chapter 9
explains the details of sleep).

When the user types a character, the UART hardware asks the RISC-V to raise an interrupt,
which activates xv6’s trap handler. The trap handler calls devintr (3506), which looks at the
RISC-V scause register to discover that the interrupt is from an external device. Then it asks a
hardware unit called the PLIC [3] to tell it which device interrupted (3514). If it was the UART,
devintr calls uartintr.

uartintr (7354) reads any waiting input characters from the UART hardware and hands
them to consoleintr (7107); it doesn’t wait for characters, since future input will raise a new
interrupt. The job of consoleintr is to accumulate input characters in cons.buf until a whole
line arrives. consoleintr treats backspace and a few other characters specially. When a newline
arrives, consoleintr wakes up a waiting consoleread (if there is one).

Once woken, consoleread will observe a full line in cons.buf, copy it to user space, and
return (via the system call machinery) to user space.

6.2 Code: Console output
A write system call on a file descriptor connected to the console eventually arrives at uartputc
(7309). The device driver maintains an output buffer (uart_tx_buf) so that writing processes
do not have to wait for the UART to finish sending; instead, uartputc appends each character to
the buffer, calls uartstart to start the device transmitting (if it isn’t already), and returns. The
only situation in which uartputc waits is if the buffer is already full.

Each time the UART finishes sending a byte, it generates an interrupt. uartintr calls uartstart,
which checks that the device really has finished sending, and hands the device the next buffered
output character. Thus if a process writes multiple bytes to the console, typically the first byte will

58

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/memlayout.h#L21
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/uart.c#L22
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/console.c#L186
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/uart.c#L50
https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/init.c#L19
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/console.c#L84
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/console.c#L100
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L186
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L194
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/uart.c#L143
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/console.c#L140
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/uart.c#L107

be sent by uartputc’s call to uartstart, and the remaining buffered bytes will be sent by
uartstart calls from uartintr as transmit complete interrupts arrive.

A general pattern to note is the decoupling of device activity from process activity via buffering
and interrupts. The console driver can process input even when no process is waiting to read it; a
subsequent read will see the input. Similarly, processes can send output without having to wait for
the device. This decoupling can increase performance by allowing processes to execute concur-
rently with device I/O, and is particularly important when the device is slow (as with the UART)
or needs immediate attention (as with echoing typed characters). This idea is sometimes called I/O
concurrency.

6.3 Concurrency in drivers
You may have noticed calls to acquire in consoleread and in consoleintr. These calls
acquire a lock, which protects the console driver’s data structures from concurrent access. There
are three concurrency dangers here: two processes on different CPUs might call consoleread
at the same time; the hardware might ask a CPU to deliver a console (really UART) interrupt while
that CPU is already executing inside consoleread; and the hardware might deliver a console
interrupt on a different CPU while consoleread is executing. Chapter 7 explains how to use
locks to ensure that these dangers don’t lead to incorrect results.

Another way in which concurrency requires care in drivers is that one process may be waiting
for input from a device, but the interrupt signaling arrival of the input may arrive when a different
process (or no process at all) is running. Thus interrupt handlers are not allowed to think about
the process or code that they have interrupted. For example, an interrupt handler cannot safely
call copyout with the current process’s page table. Interrupt handlers typically do relatively little
work (e.g., just copy the input data to a buffer), and wake up top-half code to do the rest.

6.4 Timer interrupts
Xv6 uses timer interrupts to maintain its idea of the current time and to switch among compute-
bound processes. Timer interrupts come from clock hardware attached to each RISC-V CPU. Xv6
programs each CPU’s clock hardware to interrupt the CPU periodically.

Code in start.c (1102) sets some control bits that allow supervisor-mode access to the timer
control registers, and then asks for the first timer interrupt. The time control register contains a
count that the hardware increments at a steady rate; this serves as a notion of the current time.
The stimecmp register contains a time at which the the CPU will raise a timer interrupt; setting
stimecmp to the current value of time plus x will schedule an interrupt x time units in the future.
For qemu’s RISC-V emulation, 1000000 time units is roughly a tenth of second.

Timer interrupts arrive via usertrap or kerneltrap and devintr, like other device in-
terrupts. Timer interrupts arrive with scause’s low bits set to five; devintr in trap.c detects
this situation and calls clockintr (3482). The latter function increments ticks, allowing the
kernel to track the passage of time. The increment occurs on only one CPU, to avoid time passing

59

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/start.c#L53
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L165

faster if there are multiple CPUs. clockintr wakes up any processes waiting in the pause
system call, and schedules the next timer interrupt by writing stimecmp.

devintr returns 2 for a timer interrupt in order to indicate to kerneltrap or usertrap
that they should call yield so that CPUs can be multiplexed among runnable processes.

The fact that kernel code can be interrupted by a timer interrupt that forces a context switch via
yield is part of the reason why early code in usertrap is careful to save state such as sepc
before enabling interrupts. These context switches also mean that kernel code must be written in
the knowledge that it may move from one CPU to another without warning.

6.5 Real world
Xv6, like many operating systems, allows interrupts and even context switches (via yield) while
executing in the kernel. The reason for this is to retain quick response times during complex sys-
tem calls that run for a long time. However, as noted above, allowing interrupts in the kernel is
the source of some complexity; as a result, a few operating systems allow interrupts only while
executing user code.

Supporting all the devices on a typical computer in its full glory is much work, because there
are many devices, the devices have many features, and the protocol between device and driver can
be complex and poorly documented. In many operating systems, the drivers account for more code
than the core kernel.

The UART driver retrieves data a byte at a time by reading the UART control registers; this
pattern is called programmed I/O, since software is driving the data movement. Programmed I/O
is simple, but too slow to be used at high data rates. Devices that need to move lots of data at high
speed typically use direct memory access (DMA). DMA device hardware directly writes incoming
data to RAM, and reads outgoing data from RAM. Modern disk and network devices use DMA.
A driver for a DMA device would prepare data in RAM, and then use a single write to a control
register to tell the device to process the prepared data.

Interrupts make sense when a device needs attention at unpredictable times, and not too often.
But interrupts have high CPU overhead. Thus high speed devices, such as network and disk con-
trollers, use tricks that reduce the need for interrupts. One trick is to raise a single interrupt for a
whole batch of incoming or outgoing requests. Another trick is for the driver to disable interrupts
entirely, and to check the device periodically to see if it needs attention. This technique is called
polling. Polling makes sense if the device performs operations at a high rate, but it wastes CPU
time if the device is mostly idle. Some drivers dynamically switch between polling and interrupts
depending on the current device load.

The UART driver copies incoming data first to a buffer in the kernel, and then to user space.
This makes sense at low data rates, but such a double copy can significantly reduce performance
for devices that generate or consume data very quickly. Some operating systems are able to directly
move data between user-space buffers and device hardware, often with DMA.

As mentioned in Chapter 1, the console appears to applications as a regular file, and applica-
tions read input and write output using the read and write system calls. Applications may want
to control aspects of a device that cannot be expressed through the standard file system calls (e.g.,

60

enabling/disabling line buffering in the console driver). Unix operating systems provide an ioctl
system call for such cases.

Some uses of computers require “real-time” responses to external events: responses guaranteed
to occur within a bounded time. For example, in safety-critical systems missing a deadline can lead
to disasters. Xv6 is not suitable for real-time settings. Among other things, xv6’s scheduler does
not take into account real-time deadlines when it decides what process to run next, and xv6 has
long kernel code paths with interrupts disabled, so that it may not respond to interrupts quickly. A
real-time operating system must not only fix these problems, but also be structured in a way that
allows analysis of worst-case response times.

6.6 Exercises
1. Modify uart.c to not use interrupts at all. You may need to modify console.c as well.

2. Add a driver for an Ethernet card.

61

62

Chapter 7

Locking

Most kernels, including xv6, interleave the execution of multiple activities. One source of inter-
leaving is multiprocessor hardware: computers with multiple CPUs executing independently, such
as xv6’s RISC-V. These multiple CPUs share physical RAM, and xv6 exploits the sharing to main-
tain kernel data structures that all CPUs read and write. This sharing raises the possibility of one
CPU reading a data structure while another CPU is mid-way through updating it, or even multiple
CPUs updating the same data simultaneously; without careful design such parallel access is likely
to yield incorrect results or a broken data structure. Even on a uniprocessor, the kernel may switch
the CPU among a number of threads, causing their execution to be interleaved. Finally, a device
interrupt handler that modifies the same data as some interruptible code could damage the data
if the interrupt occurs at just the wrong time. The word concurrency refers to situations in which
multiple instruction streams are interleaved, due to multiprocessor parallelism, thread switching,
or interrupts.

Kernels are full of concurrently-accessed data. For example, two CPUs could simultaneously
call kalloc, thereby concurrently popping from the head of the free list. Kernel designers like
to allow for lots of concurrency, since it can yield increased performance through parallelism,
and increased responsiveness. However, as a result kernel designers must convince themselves of
correctness despite such concurrency. There are many ways to arrive at correct code, some easier
to reason about than others. Strategies aimed at correctness under concurrency, and abstractions
that support them, are called concurrency control techniques.

Xv6 uses a number of concurrency control techniques, depending on the situation; many more
are possible. This chapter focuses on a widely used technique: the lock. A lock provides mutual
exclusion, ensuring that only one CPU at a time can hold the lock. If the programmer associates a
lock with each shared data item, and the code always holds the associated lock when using an item,
then the item will be used by only one CPU at a time. In this situation, we say that the lock pro-
tects the data item. Although locks are an easy-to-understand concurrency control mechanism, the
downside of locks is that they can limit performance, because they serialize concurrent operations.

The rest of this chapter explains why xv6 needs locks, how xv6 implements them, and how it
uses them.

63

CPU CPU

l->next = list l->next = list

list

Memory

BUS

Figure 7.1: Simplified SMP architecture

7.1 Races

As an example of why we need locks, consider two processes with exited children calling the
wait system call on two different CPUs. wait frees the child’s memory. Thus on each CPU,
the kernel will call kfree to free the children’s memory pages. The kernel allocator maintains
a linked list of free pages: kalloc() (3027) pops a page of memory from the list, and kfree()

(3005) pushes a page onto the list. For best performance, we might hope that the kfrees of the
two parent processes would execute in parallel without either having to wait for the other, but this
would not be correct given xv6’s kfree implementation.

Figure 7.1 illustrates the setting in more detail: the linked list of free pages is in memory that is
shared by the two CPUs, which manipulate the list using load and store instructions. (In reality, the
processors have caches, but conceptually multiprocessor systems behave as if there were a single,
shared memory.) If there were no concurrent requests, you might implement a list push operation
as follows:

1 struct element {
2 int data;
3 struct element *next;
4 };
5
6 struct element *list = 0;
7
8 void
9 push(int data)

10 {
11 struct element *l;
12
13 l = malloc(sizeof *l);
14 l->data = data;
15 l->next = list;
16 list = l;

64

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L69
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L47

Memory

CPU 1

CPU2
15

l->next

16

list

15 16

listl->next

Time

Figure 7.2: Example race

17 }

This implementation is correct if executed in isolation. However, the code is not correct if more
than one copy executes concurrently. If two CPUs execute push at the same time, both might
execute line 15 as shown in Fig 7.1, before either executes line 16, which results in an incorrect
outcome as illustrated by Figure 7.2. There would then be two list elements with next set to the
same former value of list. When the two assignments to list happen at line 16, the second one
will overwrite the first; the element involved in the first assignment will be lost.

The lost update at line 16 is an example of a race. A race is a situation in which a memory
location is accessed concurrently, and at least one access is a write. A race is often a sign of a bug,
either a lost update (if the accesses are writes) or a read of an incompletely-updated data structure.
The outcome of a race depends on the machine code generated by the compiler, the timing of
the two CPUs involved, and how their memory operations are ordered by the memory system,
which can make race-induced errors difficult to reproduce and debug. For example, adding print
statements while debugging push might change the timing of the execution enough to make the
race disappear.

The usual way to avoid races is to use a lock. Locks ensure mutual exclusion, so that only one
CPU at a time can execute the sensitive lines of push; this makes the scenario above impossible.
The correctly locked version of the above code adds just a few lines (highlighted in yellow):

6 struct element *list = 0;
7 struct lock listlock;
8
9 void

10 push(int data)
11 {
12 struct element *l;
13 l = malloc(sizeof *l);
14 l->data = data;

65

15
16 acquire(&listlock);
17 l->next = list;
18 list = l;
19 release(&listlock);
20 }

The sequence of instructions between acquire and release is often called a critical section.
The lock is said to be protecting list.

When we say that a lock protects data, we really mean that the lock protects some collection
of invariants that apply to the data. Invariants are properties of data structures that are maintained
across operations. Typically, an operation’s correct behavior depends on the invariants being true
when the operation begins. The operation may temporarily violate the invariants but must reestab-
lish them before finishing. For example, in the linked list case, the invariant is that list points
at the first element in the list and that each element’s next field points at the next element. The
implementation of push violates this invariant temporarily: in line 17, l points to the next list
element, but list does not point at l yet (reestablished at line 18). The race we examined above
happened because a second CPU executed code that depended on the list invariants while they
were (temporarily) violated. Proper use of a lock ensures that only one CPU at a time can operate
on the data structure in the critical section, so that no CPU will execute a data structure operation
when the data structure’s invariants do not hold.

You can think of a lock as serializing concurrent critical sections so that they run one at a time,
and thus preserve invariants (assuming the critical sections are correct in isolation). You can also
think of critical sections guarded by the same lock as being atomic with respect to each other,
so that each sees only the complete set of changes from earlier critical sections, and never sees
partially-completed updates.

Though useful for correctness, locks inherently limit performance. For example, if two pro-
cesses call kfree concurrently, the locks will serialize the two critical sections, so that there is
no benefit from running them on different CPUs. We say that multiple processes conflict if they
want the same lock at the same time, or that the lock experiences contention. A major challenge in
kernel design is avoidance of lock contention in pursuit of parallelism. Xv6 does little of that, but
sophisticated kernels organize data structures and algorithms specifically to avoid lock contention.
In the list example, a kernel may maintain a separate free list per CPU and only touch another
CPU’s free list if the current CPU’s list is empty and it must steal memory from another CPU.
Other use cases may require more complicated designs.

The placement of locks is also important for performance. For example, it would be correct to
move acquire earlier in push, before line 13. But this would likely reduce performance because
then the calls to malloc would be serialized. The section “Using locks” below provides some
guidelines for where to insert acquire and release invocations.

7.2 Code: Locks
Please read kernel/spinlock.h and kernel/spinlock.c.

66

Xv6 has two types of locks: spinlocks and sleep-locks. We’ll start with spinlocks. Xv6 repre-
sents a spinlock as a struct spinlock (1201). The important field in the structure is locked,
a word that is zero when the lock is available and non-zero when it is held. Logically, xv6 should
acquire a lock by executing code like

21 void
22 acquire(struct spinlock *lk) // does not work!
23 {
24 for(;;) {
25 if(lk->locked == 0) {
26 lk->locked = 1;
27 break;
28 }
29 }
30 }

Unfortunately, this implementation does not guarantee mutual exclusion on a multiprocessor. It
could happen that two CPUs simultaneously reach line 25, see that lk->locked is zero, and then
both grab the lock by executing line 26. At this point, two different CPUs hold the lock, which
violates the mutual exclusion property. What we need is a way to make lines 25 and 26 execute as
an atomic (i.e., indivisible) step.

Because locks are widely used, multi-core processors usually provide an instruction that can be
used to make lines 25 and 26 atomic. On the RISC-V this instruction is amoswap r, a. amoswap
reads the value at the memory address a, writes the contents of register r to that address, and puts
the value it read into r. That is, it swaps the contents of the register and the addressed memory
location. It performs this sequence atomically, using special hardware to prevent any other CPU
from using the memory address between the read and the write.

The portable C library call __sync_lock_test_and_set(addr, value) boils down to
the amoswap instruction; the function returns the old (swapped) contents of *addr. Here’s a good
way to write the loop in acquire:

21 while(__sync_lock_test_and_set(&lk->locked, 1) != 0)
22 ;

Xv6’s acquire (1271) uses the above loop. Each iteration swaps one into lk->locked and
checks the previous value; if the previous value is zero, then we’ve acquired the lock, and the swap
will have set lk->locked to one. If the previous value is one, then some other CPU holds the
lock, and the fact that we atomically swapped one into lk->locked didn’t change its value.

Once the lock is acquired, acquire records, for debugging, the CPU that acquired the lock.
The lk->cpu field is protected by the lock and must only be changed while holding the lock.

The function release (1302) is the opposite of acquire: it clears the lk->cpu field and
then releases the lock. Conceptually, the release just requires assigning zero to lk->locked. The
C standard allows compilers to implement an assignment with multiple store instructions, so a C
assignment might be non-atomic with respect to concurrent code. Instead, release uses the C
library function __sync_lock_release that performs an atomic assignment. This function also
boils down to a RISC-V amoswap instruction.

67

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.h#L2
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.c#L22
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.c#L47

7.3 Code: Using locks
Xv6 uses locks in many places to avoid races. As described above, kalloc (3027) and kfree

(3005) form a good example. Try Exercises 1 and 2 to see what happens if those functions omit
the locks. You’ll likely find that it’s difficult to trigger incorrect behavior, suggesting that it’s hard
to reliably test whether code is free from locking errors and races. Xv6 may well have as-yet-
undiscovered races.

A hard part about using locks is deciding how many locks to use and which data and invariants
each lock should protect. There are a few basic principles. First, any time a variable can be written
by one CPU at the same time that another CPU can read or write it, a lock should be used to
keep the two operations from overlapping. Second, remember that locks protect invariants: if an
invariant involves multiple memory locations, typically all of them need to be protected by a single
lock to ensure the invariant is maintained.

The rules above say when locks are necessary but say nothing about when locks are unneces-
sary, and it is important for efficiency not to lock too much, because locks reduce parallelism. If
parallelism isn’t important, then one could arrange to have only a single thread and not worry about
locks. A simple kernel can do this on a multiprocessor by having a single lock; the kernel acquires
the lock every time the kernel is entered from user space, for a system call or interrupt; the kernel
releases the lock when it returns to user space. Many uniprocessor operating systems have been
converted to run on multiprocessors using this approach, sometimes called a “big kernel lock,” but
the approach sacrifices parallelism: only one CPU can execute in the kernel at a time. If the kernel
consumes significant CPU time, more parallelism could be obtained by protecting different objects
or modules with different locks, so that different CPUs could be executing in different parts of the
kernel at the same time.

As an example of coarse-grained locking, xv6’s kalloc.c allocator has a single free list pro-
tected by a single lock. If multiple processes on different CPUs try to allocate pages at the same
time, each will have to wait for its turn by spinning in acquire. Spinning wastes CPU time, since
it’s not useful work. If contention for the lock wasted a significant fraction of CPU time, perhaps
performance could be improved by changing the allocator to have a separate free list per CPU,
each with its own lock, to allow truly parallel allocation.

As an example of fine-grained locking, xv6 has a separate lock for each file, so that processes
that manipulate different files can often proceed without waiting for each other’s locks. The file
locking scheme could be made even more fine-grained if one wanted to allow processes to simul-
taneously write different areas of the same file. Ultimately lock granularity decisions need to be
driven by performance measurements as well as complexity considerations.

As subsequent chapters explain each part of xv6, they will mention examples of xv6’s use of
locks to deal with concurrency. As a preview, Figure 7.3 lists all of the locks in xv6.

68

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L69
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L47

Lock Description

bcache.lock Protects allocation of block buffer cache entries
cons.lock Serializes read processing of console input
tx_lock Serializes access to console (uart) output hardware
ftable.lock Serializes allocation of a struct file in file table
itable.lock Protects allocation of in-memory inode entries
vdisk_lock Serializes access to disk hardware and queue of DMA descriptors
kmem.lock Serializes allocation of memory
log.lock Serializes operations on the transaction log
pipe’s pi->lock Serializes operations on each pipe
pid_lock Serializes increments of next_pid
proc’s p->lock Serializes changes to process’s state
wait_lock Helps wait avoid lost wakeups
tickslock Serializes operations on the ticks counter
inode’s ip->lock Serializes operations on each inode and its content
buf’s b->lock Serializes operations on each block buffer

Figure 7.3: Locks in xv6

7.4 Deadlock and lock ordering
Suppose the functions running on CPUs C1 and C2 both have a point at which each needs to hold
both lock A and lock B, and they acquire them in different orders:

CPU C1 CPU C2
acquire(&A);
acquire(&B);
...
release(&B);
release(&A);

acquire(&B);
acquire(&A);
...
release(&A);
release(&B);

With a bit of bad luck, C1 and C2 might both execute their first acquire at exactly the same
moment; both can succeed, since they are asking for different locks. But then both C1 and C2 will
have to wait in their second calls to acquire(), since both locks are already held by the other
CPU. Because both CPUs are waiting for each other, neither will ever release a lock, and both will
wait forever. This situation is called deadlock.

The key problem in the C1/C2 example is that the two CPUs acquired the locks in different
orders. If they had both tried to acquire A first, one would have acquired A and then B and then
released them both, and then the other CPU could have proceeded. More generally, locking code
must follow this rule to avoid deadlock: all code paths that hold multiple locks must acquire locks
in the same order. The need for this global lock acquisition order means that locks are effectively
part of each function’s specification: callers must invoke functions in a way that causes locks to be
acquired in the agreed-on order.

69

Xv6 has many lock-order chains of length two involving per-process locks (the lock in each
struct proc) due to the way that sleep works (see Chapter 9). For example, consoleintr
(7107) is the interrupt routine which handles typed characters. When a newline arrives, any process
that is waiting for console input should be woken up. To do this, consoleintr holds cons.lock
while calling wakeup, which acquires the waiting process’s lock in order to wake it up. In con-
sequence, the global deadlock-avoiding lock order includes the rule that cons.lock must be ac-
quired before any process lock. The file-system code contains xv6’s longest lock chains. For ex-
ample, creating a file requires simultaneously holding a lock on the directory, a lock on the new
file’s inode, a lock on a disk block buffer, the disk driver’s vdisk_lock, and the calling process’s
p->lock. To avoid deadlock, file-system code always acquires locks in the order mentioned in the
previous sentence.

Honoring a global deadlock-avoiding order can be surprisingly difficult. Sometimes the lock
order conflicts with logical program structure, e.g., perhaps code module M1 calls module M2, but
the lock order requires that a lock in M2 be acquired before a lock in M1. Sometimes the identities
of locks aren’t known in advance, perhaps because one lock must be held in order to discover the
identity of the lock to be acquired next. This kind of situation arises in the file system as it looks
up successive components in a path name, and in the code for the wait and exit system calls
as they search the table of processes looking for child processes. Finally, the danger of deadlock
is often a constraint on how fine-grained one can make a locking scheme, since more locks often
means more opportunity for deadlock. The need to avoid deadlock is often a major factor in kernel
implementation.

A question that sometimes arises is what should happen if a CPU tries to acquire a lock that
the same CPU already holds. One line of reasoning is that this should be allowed: no other CPU
can hold the lock, so there’s no need to worry about CPUs interfering with each others’ use of the
protected data. Locking systems that allow a CPU to re-aquire a lock it alread holds are called a
re-entrant or recursive. On the other hand, if a lock is already held, even on the same CPU, that
means an operation may have temporarily violated and not yet restored some invariants; to allow a
new operation to commence while the invariants don’t hold seems like an invitation to bugs. Xv6
takes this latter view, and forbids a CPU that currently holds a lock from re-acquiring it. Detecting
this situation is the purpose of the call to holding in acquire.

7.5 Locks and interrupts
Some xv6 spinlocks protect data that is used by both threads and interrupt handlers. For example,
the clockintr timer interrupt handler might increment ticks (3482) at about the same time
that a kernel thread reads ticks in sys_pause (3836). The lock tickslock serializes the two
accesses.

The interaction of spinlocks and interrupts raises a potential danger. Suppose sys_pause holds
tickslock, and its CPU is interrupted by a timer interrupt. clockintr would try to acquire
tickslock, see it was held, and wait for it to be released. In this situation, tickslock will
never be released: only sys_pause can release it, but sys_pause will not continue running until
clockintr returns. So the CPU will deadlock, and any code that needs either lock will also freeze.

70

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/console.c#L140
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trap.c#L165
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysproc.c#L75

To avoid this situation, if a spinlock is used by an interrupt handler, a CPU must never hold
that lock with interrupts enabled. Xv6 is more conservative: when a CPU acquires any lock, xv6
always disables interrupts on that CPU. Interrupts may still occur on other CPUs, so an interrupt’s
acquire can wait for a thread to release a spinlock; just not on the same CPU.

Xv6 re-enables interrupts when a CPU holds no spinlocks; it must do a little book-keeping to
cope with nested critical sections. acquire calls push_off (1355) and release calls pop_off
(1369) to track the nesting level of locks on the current CPU. When that count reaches zero,
pop_off restores the interrupt enable state that existed at the start of the outermost critical sec-
tion. The intr_off and intr_on functions execute RISC-V instructions to disable and enable
interrupts, respectively.

It is important that acquire call push_off strictly before setting lk->locked (1277). If the
two were reversed, there would be a brief window when the lock was held with interrupts enabled,
and an unfortunately timed interrupt would deadlock the system. Similarly, it is important that
release call pop_off only after releasing the lock (1321).

7.6 Instruction and memory ordering

It is natural to think of programs executing in the order in which source code statements appear.
That’s a reasonable mental model for single-threaded code, but is incorrect when multiple threads
interact through shared memory [2, 4]. One reason is that compilers emit load and store instructions
in orders different from those implied by the source code, and may entirely omit them (for example
by caching data in registers). Another reason is that the CPU may execute instructions out of order
to increase performance. For example, a CPU may notice that in a serial sequence of instructions
A and B are not dependent on each other. The CPU may start instruction B first, either because its
inputs are ready before A’s inputs, or in order to overlap execution of A and B.

As an example of what could go wrong, in this code for push, it would be a disaster if the
compiler or CPU moved the store corresponding to line 4 to a point after the release on line 6:

1 l = malloc(sizeof *l);
2 l->data = data;
3 acquire(&listlock);
4 l->next = list;
5 list = l;
6 release(&listlock);

If such a re-ordering occurred, there would be a window during which another CPU could acquire
the lock and observe the updated list, but see an uninitialized list->next.

The good news is that compilers and CPUs help concurrent programmers by following a set
of rules called the memory model, and by providing some primitives to help programmers control
re-ordering.

To tell the hardware and compiler not to re-order, xv6 uses __sync_synchronize() in both
acquire (1271) and release (1302). __sync_synchronize() is a memory barrier: it tells the
compiler and CPU to not reorder loads or stores across the barrier. The barriers in xv6’s acquire

71

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.c#L89
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.c#L103
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.c#L28
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.c#L66
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.c#L22
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.c#L47

and release force order in almost all cases where it matters, since xv6 uses locks around accesses
to shared data. Chapter 11 discusses a few exceptions.

7.7 Sleep locks
Sometimes xv6 needs to hold a lock for a long time. For example, the file system (Chapter 10)
keeps a file locked while reading and writing its content on the disk, and these disk operations
can take tens of milliseconds. Holding a spinlock that long would lead to waste if another process
wanted to acquire it, since the acquiring process would waste CPU for a long time while spinning.
Another drawback of spinlocks is that a process cannot yield the CPU while retaining a spinlock;
we’d like to do this so that other processes can use the CPU while the process with the lock waits
for the disk. Yielding while holding a spinlock is illegal because it might lead to deadlock if a
second thread then tried to acquire the spinlock; since acquire doesn’t yield the CPU, the second
thread’s spinning might prevent the first thread from running and releasing the lock. Yielding while
holding a lock would also violate the requirement that interrupts must be off while a spinlock is
held. Thus we’d like a type of lock that yields the CPU while waiting to acquire, and allows yields
(and interrupts) while the lock is held.

Xv6 provides such locks in the form of sleep-locks. acquiresleep (4471) yields the CPU
while waiting, using techniques that will be explained in Chapter 9. At a high level, a sleep-lock
has a locked field that is protected by a spinlock, and acquiresleep ’s call to sleep atomi-
cally yields the CPU and releases the spinlock. The result is that other threads can execute while
acquiresleep waits.

Because sleep-locks leave interrupts enabled, they cannot be used in interrupt handlers. Be-
cause acquiresleep may yield the CPU, sleep-locks cannot be used inside spinlock critical
sections (though spinlocks can be used inside sleep-lock critical sections).

Spin-locks are best suited to short critical sections, since waiting for them wastes CPU time;
sleep-locks work well for lengthy operations.

7.8 Real world
Programming with locks remains challenging despite years of research into concurrency primitives
and parallelism. It is often best to conceal locks within higher-level constructs like synchronized
queues, although xv6 does not do this. If you program with locks, it is wise to use a tool that
attempts to identify races, because it is easy to miss an invariant that requires a lock.

Most operating systems support POSIX threads (Pthreads), which allow a user process to have
several threads running concurrently on different CPUs. Pthreads has support for user-level locks,
barriers, etc. Pthreads also allows a programmer to optionally specify that a lock should be re-
entrant.

Supporting Pthreads at user level requires support from the operating system. For example, it
should be the case that if one pthread blocks in a system call, another pthread of the same process
should be able to run on that CPU. As another example, if a pthread changes its process’s address

72

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sleeplock.c#L22

space (e.g., maps or unmaps memory), the kernel must arrange that other CPUs that run threads of
the same process update their hardware page tables to reflect the change in the address space.

It is possible to implement locks without atomic instructions [10], but it is expensive, so most
operating systems use atomic instructions.

Locks can be expensive if many CPUs try to acquire the same lock at the same time. If one
CPU has a lock cached in its local cache, and another CPU must acquire the lock, then the atomic
instruction to update the cache line that holds the lock must move the line from the one CPU’s
cache to the other CPU’s cache, and perhaps invalidate any other copies of the cache line. Fetching
a cache line from another CPU’s cache can be orders of magnitude more expensive than fetching a
line from a local cache.

To avoid the expenses associated with locks, many operating systems use lock-free data struc-
tures and algorithms [6, 12]. For example, it is possible to implement a linked list like the one in the
beginning of the chapter that requires no locks during list searches, and one atomic instruction to
insert an item in a list. Lock-free programming is more complicated, however, than programming
locks; for example, one must worry about instruction and memory reordering. Programming with
locks is already hard, so xv6 avoids the additional complexity of lock-free programming.

7.9 Exercises
1. Comment out the calls to acquire and release in kalloc (3027). This seems like it

should cause problems for kernel code that calls kalloc; what symptoms do you expect to
see? When you run xv6, do you see these symptoms? How about when running usertests?
If you don’t see a problem, why not? See if you can provoke a problem by inserting dummy
loops into the critical section of kalloc.

2. Suppose that you instead commented out the locking in kfree (after restoring locking
in kalloc). What might now go wrong? Is lack of locks in kfree less harmful than in
kalloc?

3. If two CPUs call kalloc at the same time, one will have to wait for the other, which is bad
for performance. Modify kalloc.c to have more parallelism, so that simultaneous calls to
kalloc from different CPUs can proceed without waiting for each other.

4. Write a parallel program using POSIX threads, which is supported on most operating sys-
tems. For example, implement a parallel hash table and measure if the number of puts/gets
scales with increasing number of CPUs.

5. Implement a subset of Pthreads in xv6. That is, implement a user-level thread library so that
a user process can have more than 1 thread and arrange that these threads can run in parallel
on different CPUs. Come up with a design that correctly handles a thread making a blocking
system call and changing its shared address space.

73

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L69

74

Chapter 8

Scheduling

Any operating system is likely to run with more processes than the computer has CPUs, so a plan
is needed to time-share the CPUs among the processes. Ideally the sharing would be transparent to
user processes. A common approach is to provide each process with the illusion that it has its own
virtual CPU by multiplexing the processes onto the hardware CPUs. This chapter explains how xv6
achieves this multiplexing.

Before proceeding with this chapter, please read kernel/proc.h, kernel/swtch.S, and
yield(), sched(), and schedule() in kernel/proc.c.

8.1 Multiplexing

Xv6 multiplexes by switching each CPU from one process to another in two situations. First, xv6
switches when a process makes a system call that blocks (has to wait), for example read or wait.
Second, xv6 periodically forces a switch to cope with processes that compute for long periods
without blocking. The former are called voluntary switches, the latter involuntary.

Implementing multiplexing poses a few challenges. First, how to switch from one process to
another? The basic idea is to save and restore CPU registers, though the fact that this cannot be
expressed in C makes it tricky. Second, how to force switches in a way that is transparent to user
processes? Xv6 uses the standard technique in which a hardware timer’s interrupts drive context
switches. Third, all of the CPUs switch among the same set of processes, so a locking plan is
necessary to avoid mistakes such as two CPUs deciding to run the same process at the same time.
Fourth, a process’s memory and other resources must be freed when the process exits, but it cannot
finish all of this itself. Fifth, each CPU of a multi-core machine must remember which process it
is executing so that system calls affect the correct process’s kernel state.

8.2 Context switch overview

The term “context switch” refers to the steps involved in a CPU leaving off execution of one kernel
thread (usually for later resumption), and resuming execution of a different kernel thread; this

75

Kernel

shell cat
user
space

kernel
space

kstack
shell

kstack
cat

kstack
scheduler

save
restoreswtch swtch

Figure 8.1: Switching from one user process to another. In this example, xv6 runs with one CPU
(and thus one scheduler thread).

switching is the heart of multiplexing. Xv6 does not directly context switch from one process’s
kernel thread to another process’s kernel thread; instead, a kernel thread gives up the CPU by
context-switching to that CPU’s “scheduler thread,” and the scheduler thread picks a different
process’s kernel thread to run, and context-switches to that thread.

At a broader scope, the steps involved in switching from one user process to another are illus-
trated in Figure 8.1: a trap (system call or interrupt) from the old process’s user space to its kernel
thread, a context switch to the current CPU’s scheduler thread, a context switch to a new process’s
kernel thread, and a trap return to the user-level process.

8.3 Code: Context switching
The function swtch() in kernel/swtch.S contains the heart of thread context switching:
it saves the switched-from thread’s CPU registers, and restores the previously-saved registers of
the switched-to thread. The basic reason this is sufficient is that a thread’s state consist of data in
memory (e.g. its stack) plus its CPU registers; thread memory need not saved and restored because
different threads keep their data in different areas of RAM; but the CPU has only one set of registers
so they must be switched (saved and restored) between threads.

Each thread’s struct proc includes a struct context that holds the thread’s saved
registers when it is not running. A CPU’s scheduler thread’s struct context is in that CPU’s
struct cpu. When thread X wishes to switch to thread Y, thread X calls swtch(&X’s context,
&Y’s context). swtch() saves the current CPU registers in X’s context, then loads the con-
tent of Y’s context into the CPU registers, then returns.

Here’s an abbreviated copy of swtch:

swtch:
sd ra, 0(a0)
sd sp, 8(a0)
sd s0, 16(a0)
...

76

sd s11, 104(a0)

ld ra, 0(a1)
ld sp, 8(a1)
ld s0, 16(a1)
...
ld s11, 104(a1)

ret

a0 holds the first function argument, and a1 the second; in this case, the two struct context
pointers. 16(a0) refers to an offset 16 bytes into the memory pointed to by a0; referring to the
definition of struct context in kernel/proc.h (1951), this is the structure field called
s0.

Where does swtch’s ret return to? It returns to the instruction that the ra register points
to. In the example in which thread X calls swtch() to switch to Y, when ret executes, ra
has just been loaded from Y’s struct context. And the ra in Y’s struct context was
originally saved by Y’s call to swtch when Y gave up the CPU in the past. So the ret returns
to the instruction after the point at which Y called swtch(); that is, X’s call to swtch() re-
turns as if returning from Y’s original call to swtch(). And sp will be Y’s stack pointer, since
swtch loaded sp from Y’s struct context; thus on return, Y will execute on its own stack.
swtch() need not directly save or restore the program counter; it’s enough to save and restore
ra.

swtch (2902) saves callee-saved registers (ra,sp,s0..s11) but not caller-saved registers.
The RISC-V calling convention requires that if code needs to preserve the value in a caller-saved
register across a function call, the compiler must generate instructions that save the register to the
stack before the function call, and restore from the stack when the function returns. So swtch can
rely on the function that called it having already saved the caller-saved registers (either that, or the
calling function didn’t need the values in the registers).

8.4 Code: Scheduling
The last section looked at the internals of swtch; now let’s take swtch as a given and examine
switching from one process’s kernel thread through the scheduler to another process. The scheduler
exists in the form of a special thread per CPU, each running the scheduler function. This function
is in charge of choosing which process to run next. Each CPU has its own scheduler thread because
more than one CPU may be looking for something to run at any given time. Process switching
always goes through the scheduler thread, rather than direct from one process to another, to avoid
some situations in which there would be no stack on which to execute the scheduler (e.g. if the old
process has exited, or there is no other process that currently wants to run).

A process that wants to give up the CPU must acquire its own process lock p->lock, release
any other locks it is holding, update its own state (p->state), and then call sched. You can see

77

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.h#L2
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/swtch.S#L3

Process 1 Scheduler Process 2
acquire(&p->lock);
...
p->state = RUNNABLE;
swtch(&p->context, ...);

swtch(...); // return
release(&p->lock);

// find a RUNNABLE p

acquire(&p->lock);
p->state = RUNNING;
swtch(...,&p->context);

swtch(&p->context,...); // return
release(&p->lock);

Figure 8.2: swtch() always has the scheduler thread as either source or destination, and the
relevant p->lock is always held.

this sequence in yield (2629), sleep and kexit. sched calls swtch to save the current context
in p->context and switch to the scheduler context in cpu->context. swtch returns on the
scheduler’s stack as though scheduler’s swtch had returned (2582).

scheduler (2558) runs a loop: find a process to run, swtch() to it, eventually it will swtch()
back to the scheduler, which continues its loop. The scheduler loops over the process table look-
ing for a runnable process, one that has p->state == RUNNABLE. Once it finds a process, it
sets the per-CPU current process variable c->proc, marks the process as RUNNING, and then calls
swtch to start running it (2577-2582). At some point in the past, the target process must have called
swtch(); the scheduler’s call to swtch() effectively returns from that earlier call. Figure 8.2
illustrates this pattern.

xv6 holds p->lock across calls to swtch: the caller of swtch acquires the lock, but it’s re-
leased in the target after swtch returns. This arrangement is unusual: it’s more common for the
thread that acquires a lock to also release it. Xv6’s context switching breaks this convention be-
cause p->state and p->context must be updated together atomically. For example, if p->lock
were released before invoking swtch, a different CPU c might decide to run the process because
its state is RUNNABLE. CPU c will invoke swtch which will restore from p->context while the
original CPU is still saving into p->context. The result would be that the process would be re-
stored with partially-saved registers on CPU c and that both CPUs will be using the same stack,
which would cause chaos. Once yield has started to modify a running process’s state to make it
RUNNABLE, p->lock must remain held until the process has saved all its registers and the sched-
uler is running on its stack. The earliest correct release point is after scheduler (running on its
own stack) clears c->proc. Similarly, once scheduler starts to convert a RUNNABLE process to

78

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L491
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L446
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L422
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L441-L446

RUNNING, the lock cannot be released until the process’s kernel thread is completely running (after
the swtch, for example in yield).

There is one case when the scheduler’s call to swtch does not end up in sched. allocproc
sets the context ra register of a new process to forkret (2653), so that its first swtch “returns”
to the start of that function. forkret exists to release the p->lock and set up some control reg-
isters and trapframe fields that are required in order to return to user space. At the end, forkret
simulates the normal return path from a system call back to user space.

8.5 Code: mycpu and myproc
Xv6 often needs a pointer to the current process’s proc structure. On a uniprocessor one could
have a global variable pointing to the current proc. This doesn’t work on a multi-core machine,
since each CPU executes a different process. The way to solve this problem is to exploit the fact
that each CPU has its own set of registers.

While a given CPU is executing in the kernel, xv6 ensures that the CPU’s tp register always
holds the CPU’s hartid. RISC-V numbers its CPUs, giving each a unique hartid. mycpu (2178) uses
tp to index an array of cpu structures and return the one for the current CPU. A struct cpu

(1971) holds a pointer to the proc structure of the process currently running on that CPU (if any),
saved registers for the CPU’s scheduler thread, and the count of nested spinlocks needed to manage
interrupt disabling.

Ensuring that a CPU’s tp holds the CPU’s hartid is a little involved, since user code is free to
modify tp. start sets the tp register early in the CPU’s boot sequence, while still in machine
mode (1094). While preparing to return to user space, prepare_return saves tp in the trampoline
page, in case user code modifies it. Finally, uservec restores that saved tp when entering the
kernel from user space (3127). The compiler guarantees never to modify tp in kernel code. It
would be more convenient if xv6 could ask the RISC-V hardware for the current hartid whenever
needed, but RISC-V allows that only in machine mode, not in supervisor mode.

The return values of cpuid and mycpu are fragile: if the timer were to interrupt and cause the
thread to yield and later resume execution on a different CPU, a previously returned value would
no longer be correct. To avoid this problem, xv6 requires code to disable interrupts before calling
cpuid() or mycpu(), and only enable interrupts when done using the returned value.

The function myproc (2187) returns the struct proc pointer for the process that is running
on the current CPU. myproc disables interrupts, invokes mycpu, fetches the current process pointer
(c->proc) out of the struct cpu, and then enables interrupts. The return value of myproc is
safe to use even if interrupts are enabled: if a timer interrupt moves the calling process to a different
CPU, its struct proc pointer will stay the same.

8.6 Real world
The xv6 scheduler implements a simple scheduling policy that runs each process in turn. This
policy is called round robin. Real operating systems implement more sophisticated policies that,

79

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L503
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L74
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.h#L22
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/start.c#L45
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/trampoline.S#L78
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L83

for example, allow processes to have priorities. The idea is that a runnable high-priority process
will be preferred by the scheduler over a runnable low-priority process. These policies can become
complex because there are often competing goals: for example, the operating system might also
want to guarantee fairness and high throughput.

8.7 Exercises
1. Modify xv6 to use only one context switch when switching from one process’s kernel thread

to another, rather than switching through the scheduler thread. The yielding thread will need
to select the next thread itself and call swtch. The challenges will be to prevent multiple
CPUs from executing the same thread accidentally; to get the locking right; and to avoid
deadlocks.

80

Chapter 9

Sleep and Wakeup

Scheduling and locks help conceal the actions of one thread from another, but we also need ab-
stractions that help threads intentionally interact. For example, the reader of a pipe in xv6 may
need to wait for a writing process to produce data; a parent’s call to wait may need to wait for a
child to exit; and a process reading the disk needs to wait for the disk hardware to finish the read.
The xv6 kernel uses a mechanism called sleep and wakeup in these situations (and many others).
Sleep allows a kernel thread to wait for some condition to be true; another thread or an interrupt
handler can cause the condition to be true (typically by modifying some variable(s)) and then call
wakeup to indicate that threads waiting for the condition should resume. Sleep and wakeup are
often called sequence coordination or conditional synchronization mechanisms.

Before proceeding, please read the functions sleep() and wakeup() in kernel/proc.c,
and all of file kernel/pipe.c.

9.1 Overview
The sleep/wakeup interface looks like:

void sleep(void *chan, struct spinlock *lk)
void wakeup(void *chan)

sleep() marks the calling process as SLEEPING (not RUNNABLE) and releases the CPU by
context-switching to the scheduler, so that other processes can run. The chan argument is called the
wait channel. wakeup(chan)wakes up all processes (if any) that have called sleep(chan, ...)

with the same chan value. sleep and wakeup treat chan as an opaque 64-bit value; the only thing
they do with it is compare for equality. The usual pattern is for callers to pass the address of some
convenient object as the chan argument.

Kernel code calls sleep to wait for some condition to become true. For example, the kernel
code that reads from a pipe calls sleep if the pipe buffer is currently empty; the condition in this
case is the pipe buffer becoming non-empty (due to another process writing to the pipe). sleep
and wakeup do not know what the condition is: only the calling code knows. The usual pattern is
for the caller to first check the condition, and call sleep if it is not true; code that later makes the
condition true calls wakeup.

81

Here’s a sketch of how the xv6 kernel pipe code uses sleep and wakeup:

piperead(pipe){
acquire(&pipe->lock);
while(there’s no data in pipe->buffer){

// ZZZ
sleep(&pipe, &pipe->lock);

}
remove the data from the pipe;
release(&pipe->lock);

}

pipewrite(pipe){
acquire(&pipe->lock);
append data to pipe->buffer;
wakeup(&pipe);
release(&pipe->lock);

}

This code uses the address of the pipe data structure as the wait channel.

What is the lk argument to sleep? In all uses of sleep/wakeup the condition involves shared
data, used by both the thread that sleeps and the thread that calls wakeup, so there always turns
out to be a lock that protects the condition. That lock is called the condition lock. In the pipe code
above, both functions use the pipe and its buffer while holding the pipe lock, which in this case
is also the condition lock. It’s a rule that any code that calls sleep or wakeup must hold the
condition lock, and that the lock must be passed to sleep as the second argument.

The reason that the condition lock must be held when sleep is called, and that it must be
passed to sleep, is to prevent the possibility that another thread might call wakeup between the
check of the condition and the call to sleep. A call to wakeup at that point would find no sleeping
process to wake up; the wakeup would simply return. But then the call to sleep might never wake
up, since the wakeup intended for it has already happened. This undesirable situation is called a
lost wake-up.

In the pipe example above, the lost wake-up being avoided is the possibility that a thread on
another CPU might call pipewrite at the point marked ZZZ, between piperead’s check of
the condition and its call to sleep. The fact that piperead holds the pipe lock during the time
between when it checks the condition and calls sleep prevents pipewrite from executing, and
thus prevents a lost wake-up.

sleep() releases the condition lock so that the code calling wakeup() can proceed. sleep()
also context-switches to the scheduler in order to let other threads run while it is waiting. The
implementation performs these two steps in a way that is atomic (indivisible) with respect to
wakeup(), to prevent lost wake-ups.

82

piperead() {
acquire(&pipe->lock);
while(no data in pipe->buffer) {

sleep(&pipe, &pipe->lock) {
// in sleep()
acquire(&p->lock)
release(&pipe->lock)
p->state = SLEEPING
...
swtch() {

// in scheduler()
release(&p->lock)
...

Holding pipe->lock

Holding p->lock

Figure 9.1: Overlapping locks to avoid lost wake-up

9.2 Code: Sleep and wakeup

Xv6’s sleep (2703) and wakeup (2734) implement the interface used in the example above. The
basic idea is to have sleep mark the current process as SLEEPING and then call sched to re-
lease the CPU; wakeup looks for a process sleeping on the given wait channel and marks it as
RUNNABLE.

sleep acquires p->lock (2714) and only then releases the condition lock lk. The fact that
sleep holds one or the other of these locks at all times is what prevents a concurrent wakeup
(which must acquire and hold both) from acting, and thus prevents a lost wake-up. Now that
sleep holds just p->lock, it can put the process to sleep by recording the wait channel, chang-
ing the process state to SLEEPING, and calling sched (2718-2721). In a moment it will be clear
why it’s critical that p->lock is not released (by scheduler) until after the process is marked
SLEEPING.

At some point, a process will acquire the condition lock, set the condition that the sleeper
is waiting for, and call wakeup(chan). It’s important that wakeup is called while holding the
condition lock1. wakeup loops over the process table (2734). It acquires the p->lock of each
process it inspects. When wakeup finds a process in state SLEEPING with a matching chan, it
changes that process’s state to RUNNABLE. The next time scheduler runs, it will see that the
process is ready to be run.

Why do the locking rules for sleep and wakeup ensure that a process that’s going to sleep
won’t miss a concurrent wakeup? The going-to-sleep process holds either the condition lock or
its own p->lock or both from before it checks the condition until after it has marked itself as
SLEEPING; see Figure 9.1. The process calling wakeup needs to aquire both locks. The waker
might acquire the locks first, which means it will make the condition true before the consuming

1Strictly speaking it is sufficient if wakeup merely follows the acquire (that is, one could call wakeup after
the release).

83

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L540
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L571
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L551
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L555-L558
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L571

thread checks the condition, and the consuming thread won’t need to call sleep(); or the waker’s
acquire()s might have to wait until the consuming thread has completely finished going to sleep
and releases the locks, in which case the waker will then see that the consuming thread is marked
SLEEPING and will wake it up.

Sometimes multiple processes are sleeping on the same channel; for example, more than one
process reading from a pipe. A single call to wakeup will wake them all up. One of them will run
first and acquire the lock that sleep was called with, and (in the case of pipes) read whatever data
is waiting. The other processes will find that, despite being woken up, there is no data to be read.
From their point of view the wakeup was “spurious,” and they must sleep again. For this reason
sleep is always called inside a loop that re-checks the condition, as in P above.

No harm is done if two uses of sleep/wakeup accidentally choose the same channel: they will
see spurious wakeups, but looping as described above will tolerate this problem. Much of the charm
of sleep/wakeup is that it is both lightweight (no need to create special data structures to act as wait
channels) and provides a layer of indirection (callers need not know which specific process they
are interacting with).

9.3 Code: Pipes
xv6’s pipes are an example of code that uses sleep and wakeup to synchronize producers and
consumers. We saw the interface for pipes in Chapter 1: bytes written to one end of a pipe are
copied to an in-kernel buffer and then can be read from the other end of the pipe. Future chapters
will examine the file descriptor support surrounding pipes, but let’s look now at the implementa-
tions of pipewrite and piperead.

Each pipe is represented by a struct pipe, which contains a lock and a data buffer.
The fields nread and nwrite count the total number of bytes read from and written to the
buffer. The buffer wraps around: the next byte written after buf[PIPESIZE-1] is buf[0]. The
counts do not wrap. This convention lets the implementation distinguish a full buffer (nwrite ==
nread+PIPESIZE) from an empty buffer (nwrite == nread), but it means that indexing into
the buffer must use buf[nread % PIPESIZE] instead of just buf[nread] (and similarly for
nwrite).

Let’s suppose that calls to piperead and pipewrite happen simultaneously on two different
CPUs. pipewrite (6679) begins by acquiring the pipe’s lock, which protects the counts, the data,
and their associated invariants. piperead (6708) then tries to acquire the lock too, but cannot. It
spins in acquire (1271) waiting for the lock. While piperead waits, pipewrite loops over the
bytes being written (addr[0..n-1]), adding each to the pipe in turn (6697). During this loop, it
could happen that the buffer fills (6690). In this case, pipewrite calls wakeup to alert any sleeping
readers to the fact that there is data waiting in the buffer and then sleeps on &pi->nwrite to wait
for a reader to take some bytes out of the buffer. sleep releases the pipe’s lock as part of putting
pipewrite’s process to sleep.

piperead now acquires the pipe’s lock and enters its critical section: it finds that pi->nread
!= pi->nwrite (6715) (pipewritewent to sleep because pi->nwrite == pi->nread + PIPESIZE
(6690)), so it falls through to the for loop, copies data out of the pipe (6722), and increments

84

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L77
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L106
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/spinlock.c#L22
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L95
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L88
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L113
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L88
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L120

nread by the number of bytes copied. That much space in the buffer is now available for writing,
so piperead calls wakeup (6729) to wake any sleeping writers before it returns. wakeup finds a
process sleeping on &pi->nwrite, the process that was running pipewrite but stopped when
the buffer filled. It marks that process as RUNNABLE.

The pipe code uses separate wait channels for reader and writer (pi->nread and pi->nwrite);
this might make the system more efficient in the unlikely event that there are lots of readers and
writers waiting for the same pipe. The pipe code sleeps inside a loop checking the sleep condition;
if there are multiple readers or writers, all but the first process to wake up will see the condition is
false and sleep again.

9.4 Code: Wait, exit, and kill
Please read the code for functions kwait(), kexit(), and kkill() in kernel/proc.c;
these are the internal implementations of the corresponding system calls.

sleep and wakeup can be used for many kinds of waiting. An interesting example, introduced
in Chapter 1, is the interaction between a child’s exit and its parent’s wait. At the time of the
child’s death, the parent may already be sleeping in wait, or may be doing something else; in the
latter case, a subsequent call to wait must observe the child’s death, perhaps long after it calls
exit. The way that xv6 records the child’s demise until wait observes it is for exit to put the
caller into the ZOMBIE state, where it stays until the parent’s wait notices it, changes the child’s
state to UNUSED, copies the child’s exit status, and returns the child’s process ID to the parent. If
the parent exits before the child, the parent gives the child to the init process, which perpetually
calls wait; thus every child has a parent to clean up after it. A challenge is to avoid races and
deadlock between simultaneous parent wait and child exit, as well as simultaneous exit and
exit.

kwait, the kernel implementation for wait, starts by acquiring wait_lock (2503), which
acts as the condition lock that helps ensure that kwait doesn’t miss a wakeup from an exiting
child. Then kwait scans the process table. If it finds a child in ZOMBIE state, it frees that child’s
resources and its proc structure, copies the child’s exit status to the address supplied to wait (if
it is not 0), and returns the child’s process ID. If kwait finds children but none have exited, it
calls sleep to wait for any of them to exit (2545), then scans again. kwait often holds two locks,
wait_lock and some process’s pp->lock; the deadlock-avoiding order is first wait_lock and
then pp->lock.

kexit (2454) records the exit status, frees some resources, calls reparent to give any children
to the init process, wakes up the parent in case it is in wait, marks the caller as a zombie, and
permanently yields the CPU. kexit holds both wait_lock and p->lock during this sequence.
It holds wait_lock because it’s the condition lock for the wakeup(p->parent), preventing a
parent in wait from losing the wakeup. kexit must hold p->lock for this sequence also, to
prevent a parent in wait from seeing that the child is in state ZOMBIE before the child has finally
called swtch. kexit acquires these locks in the same order as kwait to avoid deadlock.

It may look incorrect for kexit to wake up the parent before setting its state to ZOMBIE, but
that is safe: although wakeup may cause the parent to run, the loop in the parent’s kwait cannot

85

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L127
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L368
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L410
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L324

examine the child until the child’s p->lock is released by scheduler, so kwait can’t look at
the exiting process until after kexit has set its state to ZOMBIE (2486).

While exit allows a process to terminate itself, the kill system call (2754) lets one process
request that another terminate. It would be too complex for kill to directly destroy the victim
process, since the victim might be executing on another CPU, perhaps in the middle of a sensitive
sequence of updates to kernel data structures. Thus kkill does very little: it just sets the victim’s
p->killed and, if it is sleeping, wakes it up. Eventually the victim will enter or leave the kernel, at
which point code in usertrap will call kexit if p->killed is set (it checks by calling killed
(2783)). If the victim is running in user space, it will see that it has been killed the next time it
enters the kernel by making a system call or because the timer (or some other device) interrupts.

If the victim process is in sleep, kkill’s call to wakeup will cause the victim to return from
sleep. This is potentially dangerous because the condition being waited for may not be true.
However, xv6 calls to sleep are always wrapped in a while loop that re-tests the condition after
sleep returns. Some calls to sleep also test p->killed in the loop, and abandon the current
activity if it is set. This is only done when such abandonment would be correct. For example, the
pipe read and write code (6686) returns if the killed flag is set; eventually the code will return back
to trap, which will again check p->killed and exit.

Some xv6 sleep loops do not check p->killed because the code is in the middle of a multi-
step system call that should be atomic (i.e., would be incorrect if abandoned midway through). The
virtio driver (7688) is an example: it does not check p->killed because a disk operation may be
one of a set of writes that are all needed in order for the file system to be left in a correct state. A
process that is killed while waiting for disk I/O won’t exit until it completes the current system call
and usertrap sees the killed flag.

9.5 Process Locking
The lock associated with each process (p->lock) is the most complex lock in xv6. A simple
way to think about p->lock is that it must be held while reading or writing any of the following
struct proc fields: p->state, p->chan, p->killed, p->xstate, and p->pid. These fields
can be used by other processes, or by scheduler threads on other CPUs, so it’s natural that they
must be protected by a lock.

However, most uses of p->lock are protecting higher-level invariants of xv6’s process data
structures and algorithms. Here’s the full set of things that p->lock does:

• Along with p->state, it prevents races in allocating proc[] slots for new processes.

• It conceals a process from view while it is being created or destroyed.

• It prevents a parent’s wait from collecting a process that has set its state to ZOMBIE but has
not yet yielded the CPU.

• It prevents another CPU’s scheduler from deciding to run a yielding process after it sets its
state to RUNNABLE but before it finishes swtch.

86

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L356
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L590
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L619
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L84
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/virtio_disk.c#L285

• It ensures that only one CPU’s scheduler decides to run a RUNNABLE processes.

• It prevents a timer interrupt from causing a process to yield while it is in swtch.

• Along with the condition lock, it helps prevent wakeup from overlooking a process that is
calling sleep but has not finished yielding the CPU.

• It prevents the victim process of kill from exiting and perhaps being re-allocated between
kkill’s check of p->pid and setting p->killed.

• It makes kkill’s check and write of p->state atomic.

The p->parent field is protected by the global lock wait_lock rather than by p->lock.
Only a process’s parent modifies p->parent, though the field is read both by the process it-
self and by other processes searching for their children. The purpose of wait_lock is to act as
the condition lock when wait sleeps waiting for any child to exit. An exiting child holds either
wait_lock or p->lock until after it has set its state to ZOMBIE, woken up its parent, and yielded
the CPU. wait_lock also serializes concurrent exits by a parent and child, so that the init

process (which inherits the child) is guaranteed to be woken up from its wait. wait_lock is a
global lock rather than a per-process lock in each parent, because, until a process acquires it, it
cannot know who its parent is.

9.6 Real world
sleep and wakeup are a simple and effective synchronization method, but there are many others;
semaphores [5] are an example. The first challenge in all of them is to avoid the “lost wakeups”
problem we saw at the beginning of the chapter. The original Unix kernel’s sleep simply dis-
abled interrupts, which sufficed because Unix ran on a single-CPU system. Because xv6 runs on
multiprocessors, it adds an explicit lock to sleep. FreeBSD’s msleep takes the same approach.
Plan 9’s sleep uses a callback function that runs with the scheduling lock held just before going
to sleep; the function serves as a last-minute check of the sleep condition, to avoid lost wakeups.
The Linux kernel’s sleep uses an explicit process queue, called a wait queue, instead of a wait
channel; the queue has its own internal lock.

Scanning the entire set of processes in wakeup is inefficient. A better solution is to replace
the chan in both sleep and wakeup with a data structure that holds a list of processes sleeping
on that structure, such as Linux’s wait queue. Plan 9’s sleep and wakeup call that structure a
rendezvous point. Many thread libraries refer to the same structure as a condition variable; in that
context, the operations sleep and wakeup are called wait and signal. All of these mechanisms
share the same flavor: the sleep condition is protected by some kind of lock dropped atomically
during sleep.

xv6’s wakeup wakes up all processes that are waiting on a particular wait channel. If there are
more than one of them, they will all try to acquire the condition lock and re-check the condition;
in many cases only one will be able to do anything useful (e.g., read all the data waiting in a pipe).

87

The rest will find the condition is no longer true and go back to sleep; it was a waste of CPU time
to wake them up. As a result, most condition variable designs provide two primitives: signal,
which wakes up one of the processes waiting for the condition variable, and broadcast, which
wakes up all of them.

Forcibly killing processes poses some problems. For example, a killed process may be deep
inside the kernel sleeping, and unwinding its stack requires care, since each function on the call
stack may need to do some clean-up. Some languages help out by providing an exception mecha-
nism, but not C. Furthermore, there are other events that can cause a sleeping process to be woken
up, even though the event it is waiting for has not happened yet. For example, when a Unix process
is sleeping, another process may send a signal to it. In this case, the process will return from the
interrupted system call with the value -1 and with the error code set to EINTR. The application
can check for these values and decide what to do. Xv6 doesn’t support signals and this complexity
doesn’t arise.

Xv6’s support for kill is not entirely satisfactory: there are sleep loops which probably should
check for p->killed. A related problem is that, even for sleep loops that check p->killed,
there is a race between sleep and kill; the latter may set p->killed and try to wake up the
victim just after the victim’s loop checks p->killed but before it calls sleep. If this problem
occurs, the victim won’t notice the p->killed until the condition it is waiting for occurs. This
may be quite a bit later or even never (e.g., if the victim is waiting for input from the console, but
the user doesn’t type any input).

9.7 Exercises
1. Implement counting semaphores in xv6. Choose a few of xv6’s uses of sleep and wakeup

and replace them with semaphores. Judge the result.

2. Can you implement a variant of sleep() that takes just one argument, the channel, and
doesn’t need a lock argument?

3. Fix the race mentioned above between kill and sleep, so that a kill that occurs after
the victim’s sleep loop checks p->killed but before it calls sleep results in the victim
abandoning the current system call.

4. Design a plan so that every sleep loop checks p->killed so that, for example, a process
that is in the virtio driver can return quickly from the while loop if it is killed by another
process.

88

Chapter 10

File system

The purpose of a file system is to organize and store data. File systems typically support sharing
of data among users and applications, as well as persistence so that data is still available after a
reboot.

The xv6 file system provides Unix-like files, directories, and pathnames (see Chapter 1), and
stores its data on a virtio disk for persistence. The file system addresses several challenges:

• The file system needs on-disk data structures to represent the tree of named directories and
files, to record the identities of the blocks that hold each file’s content, and to record which
areas of the disk are free.

• The file system must support crash recovery. That is, if a crash (e.g., power failure) occurs,
the file system must still work correctly after a restart. The risk is that a crash might interrupt
a sequence of updates and leave inconsistent on-disk data structures (e.g., a block that is both
used in a file and marked free).

• Different processes may operate on the file system at the same time, so the file-system code
must coordinate to maintain invariants.

• Accessing a disk is orders of magnitude slower than accessing memory, so the file system
must maintain an in-memory cache of popular blocks.

The rest of this chapter explains how xv6 addresses these challenges.

10.1 Overview
The xv6 file system implementation is organized in seven layers, shown in Figure 10.1. The disk
layer reads and writes blocks on an virtio hard drive. The buffer cache layer caches disk blocks
and synchronizes access to them, making sure that only one kernel process at a time can modify
the data stored in any particular block. The logging layer allows higher layers to wrap updates
to several blocks in a transaction, and ensures that the blocks are updated atomically in the face
of crashes (i.e., all of them are updated or none). The inode layer provides individual files, each

89

Directory

Inode

Logging

Buffer cache

Pathname

File descriptor

 Disk

Figure 10.1: Layers of the xv6 file system.

represented as an inode with a unique i-number and some blocks holding the file’s data. The di-
rectory layer implements each directory as a special kind of inode whose content is a sequence of
directory entries, each of which contains a file’s name and i-number. The pathname layer provides
hierarchical path names like /usr/rtm/xv6/fs.c, and resolves them with recursive lookup. The
file descriptor layer abstracts many Unix resources (e.g., pipes, devices, files, etc.) using the file
system interface, simplifying the lives of application programmers.

Disk hardware traditionally presents the data on the disk as a numbered sequence of 512-byte
blocks (also called sectors): sector 0 is the first 512 bytes, sector 1 is the next, and so on. The
block size that an operating system uses for its file system maybe different than the sector size
that a disk uses, but typically the block size is a multiple of the sector size. Xv6 holds copies of
blocks that it has read into memory in objects of type struct buf (3900). The data stored in this
structure is sometimes out of sync with the disk: it might have not yet been read in from disk (the
disk is working on it but hasn’t returned the sector’s content yet), or it might have been updated by
software but not yet written to the disk.

The file system must have a plan for where it stores inodes and content blocks on the disk. To
do so, xv6 divides the disk into several sections, as Figure 10.2 shows. The file system does not
use block 0 (it holds the boot sector). Block 1 is called the superblock; it contains metadata about
the file system (the file system size in blocks, the number of data blocks, the number of inodes,
and the number of blocks in the log). Blocks starting at 2 hold the log. After the log are the inodes,
with multiple inodes per block. After those come bitmap blocks tracking which data blocks are
in use. The remaining blocks are data blocks; each is either marked free in the bitmap block, or
holds content for a file or directory. The superblock is filled in by a separate program, called mkfs,
which builds an initial file system.

The rest of this chapter discusses each layer, starting with the buffer cache. Look out for situa-
tions where well-chosen abstractions at lower layers ease the design of higher ones.

90

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/buf.h#L1

0

boot super inodes bit map data log

1

data

2

Figure 10.2: Structure of the xv6 file system.

10.2 Buffer cache layer
The buffer cache has two jobs: (1) synchronize access to disk blocks to ensure that only one copy
of a block is in memory and that only one kernel thread at a time uses that copy; (2) cache popular
blocks so that they don’t need to be re-read from the slow disk. The code is in bio.c.

The main interface exported by the buffer cache consists of bread and bwrite; the former
obtains a buf containing a copy of a block which can be read or modified in memory, and the latter
writes a modified buffer to the appropriate block on the disk. A kernel thread must release a buffer
by calling brelse when it is done with it. The buffer cache uses a per-buffer sleep-lock to ensure
that only one thread at a time uses each buffer (and thus each disk block); bread returns a locked
buffer, and brelse releases the lock.

Let’s return to the buffer cache. The buffer cache has a fixed number of buffers to hold disk
blocks, which means that if the file system asks for a block that is not already in the cache, the
buffer cache must recycle a buffer currently holding some other block. The buffer cache recycles
the least recently used buffer for the new block. The assumption is that the least recently used
buffer is the one least likely to be used again soon.

10.3 Code: Buffer cache
The buffer cache is a doubly-linked list of buffers. The function binit, called by main (1176),
initializes the list with the NBUF buffers in the static array buf (4292-4301). All other access to the
buffer cache refer to the linked list via bcache.head, not the buf array.

A buffer has two state fields associated with it. The field valid indicates that the buffer con-
tains a copy of the block. The field disk indicates that the buffer content has been handed to the
disk, which may change the buffer (e.g., write data from the disk into data).

bread (4352) calls bget to get a buffer for the given sector (4356). If the buffer needs to be
read from disk, bread calls virtio_disk_rw to do that before returning the buffer.

bget (4308) scans the buffer list for a buffer with the given device and sector numbers (4314-
4322). If there is such a buffer, bget acquires the sleep-lock for the buffer. bget then returns the
locked buffer.

If there is no cached buffer for the given sector, bget must make one, possibly reusing a buffer
that held a different sector. It scans the buffer list a second time, looking for a buffer that is not in use
(b->refcnt = 0); any such buffer can be used. bget edits the buffer metadata to record the new
device and sector number and acquires its sleep-lock. Note that the assignment b->valid = 0

ensures that bread will read the block data from disk rather than incorrectly using the buffer’s
previous contents.

91

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/main.c#L27
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L43-L52
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L93
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L97
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L59
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L65-L73
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L65-L73

It is important that there is at most one cached buffer per disk sector, to ensure that readers
see writes, and because the file system uses locks on buffers for synchronization. bget ensures
this invariant by holding the bcache.lock continuously from the first loop’s check of whether
the block is cached through the second loop’s declaration that the block is now cached (by setting
dev, blockno, and refcnt). This causes the check for a block’s presence and (if not present) the
designation of a buffer to hold the block to be atomic.

It is safe for bget to acquire the buffer’s sleep-lock outside of the bcache.lock critical
section, since the non-zero b->refcnt prevents the buffer from being re-used for a different
disk block. The sleep-lock protects reads and writes of the block’s buffered content, while the
bcache.lock protects information about which blocks are cached.

If all the buffers are busy, then too many processes are simultaneously executing file system
calls; bget panics. A more graceful response might be to sleep until a buffer became free, though
there would then be a possibility of deadlock.

Once bread has read the disk (if needed) and returned the buffer to its caller, the caller has
exclusive use of the buffer and can read or write the data bytes. If the caller does modify the buffer,
it must call bwrite to write the changed data to disk before releasing the buffer. bwrite (4366)
calls virtio_disk_rw to talk to the disk hardware.

When the caller is done with a buffer, it must call brelse to release it. (The name brelse,
a shortening of b-release, is cryptic but worth learning: it originated in Unix and is used in BSD,
Linux, and Solaris too.) brelse (4376) releases the sleep-lock and moves the buffer to the front
of the linked list (4387-4392). Moving the buffer causes the list to be ordered by how recently the
buffers were used (meaning released): the first buffer in the list is the most recently used, and the
last is the least recently used. The two loops in bget take advantage of this: the scan for an existing
buffer must process the entire list in the worst case, but checking the most recently used buffers
first (starting at bcache.head and following next pointers) will reduce scan time when there is
good locality of reference. The scan to pick a buffer to reuse picks the least recently used buffer by
scanning backward (following prev pointers).

10.4 Logging layer
One of the most interesting problems in file system design is crash recovery. The problem arises
because many file-system operations involve multiple writes to the disk, and a crash after a subset
of the writes may leave the on-disk file system in an inconsistent state. For example, suppose
a crash occurs during file truncation (setting the length of a file to zero and freeing its content
blocks). Depending on the order of the disk writes, the crash may either leave an inode with a
reference to a content block that is marked free, or it may leave an allocated but unreferenced
content block.

The latter is relatively benign, but an inode that refers to a freed block is likely to cause serious
problems after a reboot. After reboot, the kernel might allocate that block to another file, and now
we have two different files pointing unintentionally to the same block. If xv6 supported multiple
users, this situation could be a security problem, since the old file’s owner would be able to read
and write blocks in the new file, owned by a different user.

92

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L107
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L117
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L128-L133

Xv6 solves the problem of crashes during file-system operations with a simple form of logging.
An xv6 system call does not directly write the on-disk file system data structures. Instead, it places
a description of all the disk writes it wishes to make in a log on the disk. Once the system call has
logged all of its writes, it writes a special commit record to the disk indicating that the log contains
a complete operation. At that point the system call copies the writes to the on-disk file system data
structures. After those writes have completed, the system call erases the log on disk.

If the system should crash and reboot, the file-system code recovers from the crash as follows,
before running any processes. If the log is marked as containing a complete operation, then the
recovery code copies the writes to where they belong in the on-disk file system. If the log is not
marked as containing a complete operation, the recovery code ignores the log. The recovery code
finishes by erasing the log.

Why does xv6’s log solve the problem of crashes during file system operations? If the crash
occurs before the operation commits, then the log on disk will not be marked as complete, the re-
covery code will ignore it, and the state of the disk will be as if the operation had not even started. If
the crash occurs after the operation commits, then recovery will replay all of the operation’s writes,
perhaps repeating them if the operation had started to write them to the on-disk data structure. In
either case, the log makes operations atomic with respect to crashes: after recovery, either all of
the operation’s writes appear on the disk, or none of them appear.

10.5 Log design
The log resides at a known fixed location, specified in the superblock. It consists of a header block
followed by a sequence of updated block copies (“logged blocks”). The header block contains an
array of sector numbers, one for each of the logged blocks, and the count of log blocks. The count
in the header block on disk is either zero, indicating that there is no transaction in the log, or non-
zero, indicating that the log contains a complete committed transaction with the indicated number
of logged blocks. Xv6 writes the header block when a transaction commits, but not before, and sets
the count to zero after copying the logged blocks to the file system. Thus a crash midway through
a transaction will result in a count of zero in the log’s header block; a crash after a commit will
result in a non-zero count.

Each system call’s code indicates the start and end of the sequence of writes that must be atomic
with respect to crashes. To allow concurrent execution of file-system operations by different pro-
cesses, the logging system can accumulate the writes of multiple system calls into one transaction.
Thus a single commit may involve the writes of multiple complete system calls. To avoid splitting
a system call across transactions, the logging system only commits when no file-system system
calls are underway.

The idea of committing several transactions together is known as group commit. Group commit
reduces the number of disk operations because it amortizes the fixed cost of a commit over multiple
operations. Group commit also hands the disk system more concurrent writes at the same time,
perhaps allowing the disk to write them all during a single disk rotation. Xv6’s virtio driver doesn’t
support this kind of batching, but xv6’s file system design allows for it.

Xv6 dedicates a fixed amount of space on the disk to hold the log. The total number of blocks

93

written by the system calls in a transaction must fit in that space. This has two consequences.
No single system call can be allowed to write more distinct blocks than there is space in the log.
This is not a problem for most system calls, but two of them can potentially write many blocks:
write and unlink. A large file write may write many data blocks and many bitmap blocks as
well as an inode block; unlinking a large file might write many bitmap blocks and an inode. Xv6’s
write system call breaks up large writes into multiple smaller writes that fit in the log, and unlink
doesn’t cause problems because in practice the xv6 file system uses only one bitmap block. The
other consequence of limited log space is that the logging system cannot allow a system call to
start unless it is certain that the system call’s writes will fit in the space remaining in the log.

10.6 Code: logging
A typical use of the log in a system call looks like this:

begin_op();
...
bp = bread(...);
bp->data[...] = ...;
log_write(bp);
...
end_op();

begin_op (4702) waits until the logging system is not currently committing, and until there is
enough unreserved log space to hold the writes from this call. log.outstanding counts the num-
ber of system calls that have reserved log space; the total reserved space is log.outstanding
times MAXOPBLOCKS. Incrementing log.outstanding both reserves space and prevents a com-
mit from occurring during this system call. The code conservatively assumes that each system call
might write up to MAXOPBLOCKS distinct blocks.

log_write (4790) acts as a proxy for bwrite. It records the block’s sector number in memory,
reserving it a slot in the log on disk, and pins the buffer in the block cache to prevent the block
cache from evicting it. The block must stay in the cache until committed: until then, the cached
copy is the only record of the modification; it cannot be written to its place on disk until after
commit; and other reads in the same transaction must see the modifications. log_write notices
when a block is written multiple times during a single transaction, and allocates that block the
same slot in the log. This optimization is often called absorption. It is common that, for example,
the disk block containing inodes of several files is written several times within a transaction. By
absorbing several disk writes into one, the file system can save log space and can achieve better
performance because only one copy of the disk block must be written to disk.

end_op (4722) first decrements the count of outstanding system calls. If the count is now zero,
it commits the current transaction by calling commit(). There are four stages in this process.
write_log() (4754) copies each block modified in the transaction from the buffer cache to its
slot in the log on disk. write_head() (4668) writes the header block to disk: this is the commit
point, and a crash after the write will result in recovery replaying the transaction’s writes from the
log. install_trans (4619) reads each block from the log and writes it to the proper place in the

94

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/log.c#L128
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/log.c#L216
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/log.c#L148
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/log.c#L180
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/log.c#L104
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/log.c#L67

file system. Finally end_op writes the log header with a count of zero; this has to happen before
the next transaction starts writing logged blocks, so that a crash doesn’t result in recovery using
one transaction’s header with the subsequent transaction’s logged blocks.

recover_from_log (4682) is called from initlog (4606), which is called from fsinit(4891)
during boot before the first user process runs (2666). It reads the log header, and mimics the actions
of end_op if the header indicates that the log contains a committed transaction.

An example use of the log occurs in filewrite (5803). The transaction looks like this:

begin_op();
ilock(f->ip);
r = writei(f->ip, ...);
iunlock(f->ip);
end_op();

This code is wrapped in a loop that breaks up large writes into individual transactions of just a few
sectors at a time, to avoid overflowing the log. The call to writei writes many blocks as part of
this transaction: the file’s inode, one or more bitmap blocks, and some data blocks.

10.7 Code: Block allocator
File and directory content is stored in disk blocks, which must be allocated from a free pool. Xv6’s
block allocator maintains a free bitmap on disk, with one bit per block. A zero bit indicates that
the corresponding block is free; a one bit indicates that it is in use. The program mkfs sets the bits
corresponding to the boot sector, superblock, log blocks, inode blocks, and bitmap blocks.

The block allocator provides two functions: balloc allocates a new disk block, and bfree

frees a block. balloc The loop in balloc at (4923) considers every block, starting at block 0 up
to sb.size, the number of blocks in the file system. It looks for a block whose bitmap bit is zero,
indicating that it is free. If balloc finds such a block, it updates the bitmap and returns the block.
For efficiency, the loop is split into two pieces. The outer loop reads each block of bitmap bits. The
inner loop checks all Bits-Per-Block (BPB) bits in a single bitmap block. The race that might occur
if two processes try to allocate a block at the same time is prevented by the fact that the buffer
cache only lets one process use any one bitmap block at a time.

bfree (4952) finds the right bitmap block and clears the right bit. Again the exclusive use
implied by bread and brelse avoids the need for explicit locking.

As with much of the code described in the remainder of this chapter, balloc and bfree must
be called inside a transaction.

10.8 Inode layer
The term inode can have one of two related meanings. It might refer to the on-disk data structure
containing a file’s size and list of data block numbers. Or “inode” might refer to an in-memory
inode, which contains a copy of the on-disk inode as well as extra information needed within the
kernel.

95

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/log.c#L118
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/log.c#L54
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L42
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L516
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L135
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L73
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L93

The on-disk inodes are packed into a contiguous area of disk called the inode blocks. Every
inode is the same size, so it is easy, given a number n, to find the nth inode on the disk. In fact, this
number n, called the inode number or i-number, is how inodes are identified in the implementation.

The on-disk inode is defined by a struct dinode (4131). The type field distinguishes be-
tween files, directories, and special files (devices). A type of zero indicates that an on-disk inode
is free. The nlink field counts the number of directory entries that refer to this inode, in order
to recognize when the on-disk inode and its data blocks should be freed. The size field records
the number of bytes of content in the file. The addrs array records the block numbers of the disk
blocks holding the file’s content.

The kernel keeps the set of active inodes in memory in a table called itable; struct inode

(4216) is the in-memory copy of a struct dinode on disk. The kernel stores an inode in memory
only if there are C pointers referring to that inode. The ref field counts the number of C pointers
referring to the in-memory inode, and the kernel discards the inode from memory if the reference
count drops to zero. The iget and iput functions acquire and release pointers to an inode, mod-
ifying the reference count. Pointers to an inode can come from file descriptors, current working
directories, and transient kernel code such as kexec.

There are four lock or lock-like mechanisms in xv6’s inode code. itable.lock protects the
invariant that an inode is present in the inode table at most once, and the invariant that an in-
memory inode’s ref field counts the number of in-memory pointers to the inode. Each in-memory
inode has a lock field containing a sleep-lock, which ensures exclusive access to the inode’s fields
(such as file length) as well as to the inode’s file or directory content blocks. An inode’s ref, if it is
greater than zero, causes the system to maintain the inode in the table, and not re-use the table entry
for a different inode. Finally, each inode contains a nlink field (on disk and copied in memory if
in memory) that counts the number of directory entries that refer to a file; xv6 won’t free an inode
if its link count is greater than zero.

A struct inode pointer returned by iget() is guaranteed to be valid until the corresponding
call to iput(); the inode won’t be deleted, and the memory referred to by the pointer won’t be
re-used for a different inode. iget() provides non-exclusive access to an inode, so that there can
be many pointers to the same inode. Many parts of the file-system code depend on this behavior of
iget(), both to hold long-term references to inodes (as open files and current directories) and to
prevent races while avoiding deadlock in code that manipulates multiple inodes (such as pathname
lookup).

The struct inode that iget returns may not have any useful content. In order to ensure it
holds a copy of the on-disk inode, code must call ilock. This locks the inode (so that no other
process can ilock it) and reads the inode from the disk, if it has not already been read. iunlock
releases the lock on the inode. Separating acquisition of inode pointers from locking helps avoid
deadlock in some situations, for example during directory lookup. Multiple processes can hold a
C pointer to an inode returned by iget, but only one process can lock the inode at a time.

The inode table only stores inodes to which kernel code or data structures hold C pointers. Its
main job is synchronizing access by multiple processes. The inode table also happens to cache
frequently-used inodes, but caching is secondary; if an inode is used frequently, the buffer cache
will probably keep it in memory. Code that modifies an in-memory inode writes it to disk with

96

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.h#L32
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.h#L17

iupdate.

10.9 Code: Inodes
To allocate a new inode (for example, when creating a file), xv6 calls ialloc (5059). ialloc is
similar to balloc: it loops over the inode structures on the disk, one block at a time, looking for
one that is marked free. When it finds one, it claims it by writing the new type to the disk and
then returns an entry from the inode table with the tail call to iget (5073). The correct operation
of ialloc depends on the fact that only one process at a time can be holding a reference to bp:
ialloc can be sure that some other process does not simultaneously see that the inode is available
and try to claim it.

iget (5107) looks through the inode table for an active entry (ip->ref > 0) with the desired
device and inode number. If it finds one, it returns a new reference to that inode (5116-5120). As
iget scans, it records the position of the first empty slot (5121-5122), which it uses if it needs to
allocate a table entry.

Code must lock the inode using ilock before reading or writing its metadata or content. ilock
(5153) uses a sleep-lock for this purpose. Once ilock has exclusive access to the inode, it reads the
inode from disk (more likely, the buffer cache) if needed. The function iunlock (5181) releases
the sleep-lock, which may cause any processes sleeping to be woken up.

iput (5208) releases a C pointer to an inode by decrementing the reference count (5231). If this
is the last reference, the inode’s slot in the inode table is now free and can be re-used for a different
inode.

If iput sees that there are no C pointer references to an inode and that the inode has no links
to it (occurs in no directory), then the inode and its data blocks must be freed. iput calls itrunc
to truncate the file to zero bytes, freeing the data blocks; sets the inode type to 0 (unallocated); and
writes the inode to disk (5213).

The locking protocol in iput in the case in which it frees the inode deserves a closer look. One
danger is that a concurrent thread might be waiting in ilock to use this inode (e.g., to read a file
or list a directory), and won’t be prepared to find that the inode is no longer allocated. This can’t
happen because there is no way for a system call to get a pointer to an in-memory inode if it has
no links to it and ip->ref is one. That one reference is the reference owned by the thread calling
iput. The other main danger is that a concurrent call to ialloc might choose the same inode that
iput is freeing. This can happen only after the iupdate writes the disk so that the inode has type
zero. This race is benign; the allocating thread will politely wait to acquire the inode’s sleep-lock
before reading or writing the inode, at which point iput is done with it.

iput() can write to the disk. This means that any system call that uses the file system may
write to the disk, because the system call may be the last one having a reference to the file. Even
calls like read() that appear to be read-only, may end up calling iput(). This, in turn, means
that even read-only system calls must be wrapped in transactions if they use the file system.

There is a challenging interaction between iput() and crashes. iput() doesn’t truncate a file
immediately when the link count for the file drops to zero, because some process might still hold a
reference to the inode in memory: a process might still be reading and writing to the file, because

97

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L200
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L214
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L248
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L257-L261
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L262-L263
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L294
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L322
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L338
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L361
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L343

type

major

minor

nlink

size

address 1
.....

address 12

indirect

dinode

address 1

address 256

.....

indirect block

data

data

data

data

...

...

Figure 10.3: The representation of a file on disk.

it successfully opened it. But, if a crash happens before the last process closes the file descriptor
for the file, then the file will be marked allocated on disk but no directory entry will point to it.

File systems handle this case in one of two ways. The simple solution is that on recovery, after
reboot, the file system scans the whole file system for files that are marked allocated, but have no
directory entry pointing to them. If any such file exists, then it can free those files.

The second solution doesn’t require scanning the file system. In this solution, the file system
records on disk (e.g., in the super block) the inode inumber of a file whose link count drops to zero
but whose reference count isn’t zero. If the file system removes the file when its reference count
reaches 0, then it updates the on-disk list by removing that inode from the list. On recovery, the file
system frees any file in the list.

Xv6 implements neither solution, which means that inodes may be marked allocated on disk,
even though they are not in use anymore. This means that over time xv6 runs the risk that it may
run out of disk space.

10.10 Code: Inode content
The on-disk inode structure, struct dinode, contains a size and an array of block numbers (see
Figure 10.3). The inode data is found in the blocks listed in the dinode ’s addrs array. The first

98

NDIRECT blocks of data are listed in the first NDIRECT entries in the array; these blocks are called
direct blocks. The next NINDIRECT blocks of data are listed not in the inode but in a data block
called the indirect block. The last entry in the addrs array gives the address of the indirect block.
Thus the first 12 kB (NDIRECT x BSIZE) bytes of a file can be loaded from blocks listed in the
inode, while the next 256 kB (NINDIRECT x BSIZE) bytes can only be loaded after consulting the
indirect block. This is a good on-disk representation but a complex one for clients. The function
bmap manages the representation so that higher-level routines, such as readi and writei, which
we will see shortly, do not need to manage this complexity. bmap returns the disk block number of
the bn’th data block for the inode ip. If ip does not have such a block yet, bmap allocates one.

The function bmap (5283) begins by picking off the easy case: the first NDIRECT blocks are
listed in the inode itself (5288-5296). The next NINDIRECT blocks are listed in the indirect block at
ip->addrs[NDIRECT]. bmap reads the indirect block (5308) and then reads a block number from
the right position within the block (5309). If the block number exceeds NDIRECT+NINDIRECT,
bmap panics; writei contains the check that prevents this from happening (5415).

bmap allocates blocks as needed. An ip->addrs[] or indirect entry of zero indicates that no
block is allocated. As bmap encounters zeros, it replaces them with the numbers of fresh blocks,
allocated on demand (5289-5290) (5302-5303).

itrunc frees a file’s blocks, resetting the inode’s size to zero. itrunc (5327) starts by freeing
the direct blocks (5333-5338), then the ones listed in the indirect block (5343-5346), and finally the
indirect block itself (5348-5349).

bmap makes it easy for readi and writei to get at an inode’s data. readi (5373) starts by
making sure that the offset and count are not beyond the end of the file. Reads that start beyond
the end of the file return an error (5378-5379) while reads that start at or cross the end of the file
return fewer bytes than requested (5380-5381). The main loop processes each block of the file,
copying data from the buffer into dst (5383-5395). writei (5408) is identical to readi, with three
exceptions: writes that start at or cross the end of the file grow the file, up to the maximum file
size (5415-5416); the loop copies data into the buffers instead of out (5424); and if the write has
extended the file, writei must update its size (5432-5433).

The function stati (5359) copies inode metadata into the stat structure, which is exposed to
user programs via the stat system call.

10.11 Code: directory layer
A directory is implemented internally much like a file. Its inode has type T_DIR and its data is
a sequence of directory entries. Each entry is a struct dirent (4165), which contains a name
and an inode number. The name is at most DIRSIZ (14) characters; if shorter, it is terminated by a
NULL (0) byte. Directory entries with inode number zero are free.

The function dirlookup (5453) searches a directory for an entry with the given name. If it
finds one, it returns a pointer to the corresponding inode, unlocked, and sets *poff to the byte
offset of the entry within the directory, in case the caller wishes to edit it. If dirlookup finds
an entry with the right name, it updates *poff and returns an unlocked inode obtained via iget.
dirlookup is the reason that iget returns unlocked inodes. The caller has locked dp, so if the

99

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L406
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L411-L419
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L430
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L431
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L536
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L412-L413
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L424-L425
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L449
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L455-L460
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L465-L468
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L470-L471
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L495
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L500-L501
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L502-L503
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L505-L517
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L529
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L536-L537
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L545
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L553-L554
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L481
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.h#L56
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L575

lookup was for ., an alias for the current directory, attempting to lock the inode before returning
would try to re-lock dp and deadlock. (There are more complicated deadlock scenarios involving
multiple processes and .., an alias for the parent directory; . is not the only problem.) The caller
can unlock dp and then lock ip, ensuring that it only holds one lock at a time.

The function dirlink (5481) writes a new directory entry with the given name and inode
number into the directory dp. If the name already exists, dirlink returns an error (5487-5491).
The main loop reads directory entries looking for an unallocated entry. When it finds one, it stops
the loop early (5493-5498), with off set to the offset of the available entry. Otherwise, the loop
ends with off set to dp->size. Either way, dirlink then adds a new entry to the directory by
writing at offset off (5502-5503).

10.12 Code: Path names
Path name lookup involves a succession of calls to dirlookup, one for each path component.
namei (5590) evaluates path and returns the corresponding inode. The function nameiparent

is a variant: it stops before the last element, returning the inode of the parent directory and copying
the final element into name. Both call the generalized function namex to do the real work.

namex (5555) starts by deciding where the path evaluation begins. If the path begins with a
slash, evaluation begins at the root; otherwise, the current directory (5559-5562). Then it uses
skipelem to consider each element of the path in turn (5564). Each iteration of the loop must
look up name in the current inode ip. The iteration begins by locking ip and checking that it is a
directory. If not, the lookup fails (5565-5569). (Locking ip is necessary not because ip->type can
change underfoot—it can’t—but because until ilock runs, ip->type is not guaranteed to have
been loaded from disk.) If the call is nameiparent and this is the last path element, the loop stops
early, as per the definition of nameiparent; the final path element has already been copied into
name, so namex need only return the unlocked ip (5570-5574). Finally, the loop looks for the path
element using dirlookup and prepares for the next iteration by setting ip = next (5575-5580).
When the loop runs out of path elements, it returns ip.

The procedure namex may take a long time to complete: it could involve several disk opera-
tions to read inodes and directory blocks for the directories traversed in the pathname (if they are
not in the buffer cache). Xv6 is carefully designed so that if an invocation of namex by one kernel
thread is blocked on a disk I/O, another kernel thread looking up a different pathname can pro-
ceed concurrently. namex locks each directory in the path separately so that lookups in different
directories can proceed in parallel.

This concurrency introduces some challenges. For example, while one kernel thread is looking
up a pathname another kernel thread may be changing the directory tree by unlinking a directory.
A potential risk is that a lookup may be searching a directory that has been deleted by another
kernel thread and its blocks have been re-used for another directory or file.

Xv6 avoids such races. For example, when executing dirlookup in namex, the lookup thread
holds the lock on the directory and dirlookup returns an inode that was obtained using iget.
iget increases the reference count of the inode. Only after receiving the inode from dirlookup

does namex release the lock on the directory. Now another thread may unlink the inode from the

100

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L603
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L609-L613
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L615-L620
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L625-L626
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L710
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L675
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L679-L682
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L684
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L685-L689
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L690-L694
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L695-L700

directory but xv6 will not delete the inode yet, because the reference count of the inode is still
larger than zero.

Another risk is deadlock. For example, next points to the same inode as ip when looking
up ".". Locking next before releasing the lock on ip would result in a deadlock. To avoid this
deadlock, namex unlocks the directory before obtaining a lock on next. Here again we see why
the separation between iget and ilock is important.

10.13 File descriptor layer

A cool aspect of the Unix interface is that most resources in Unix are represented as files, including
devices such as the console, pipes, and of course, real files. The file descriptor layer is the layer
that achieves this uniformity.

Xv6 gives each process its own table of open files, or file descriptors, as we saw in Chapter 1.
Each open file is represented by a struct file (4200), which is a wrapper around either an inode
or a pipe, plus an I/O offset. Each call to open creates a new open file (a new struct file): if
multiple processes open the same file independently, the different instances will have different I/O
offsets. On the other hand, a single open file (the same struct file) can appear multiple times
in one process’s file table and also in the file tables of multiple processes. This would happen if
one process used open to open the file and then created aliases using dup or shared it with a child
using fork. A reference count tracks the number of references to a particular open file. A file can
be open for reading or writing or both. The readable and writable fields track this.

All the open files in the system are kept in a global file table, the ftable. The file table
has functions to allocate a file (filealloc), create a duplicate reference (filedup), release a
reference (fileclose), and read and write data (fileread and filewrite).

The first three follow the now-familiar form. filealloc (5679) scans the file table for an
unreferenced file (f->ref == 0) and returns a new reference; filedup (5702) increments the
reference count; and fileclose (5714) decrements it. When a file’s reference count reaches zero,
fileclose releases the underlying pipe or inode, according to the type.

The functions filestat, fileread, and filewrite implement the stat, read, and write
operations on files. filestat (5753) is only allowed on inodes and calls stati. fileread and
filewrite check that the operation is allowed by the open mode and then pass the call through to
either the pipe or inode implementation. If the file represents an inode, fileread and filewrite
use the I/O offset as the offset for the operation and then advance it (5787-5788) (5830-5831). Pipes
have no concept of offset. Recall that the inode functions require the caller to handle locking (5759-
5761) (5786-5789) (5829-5832). The inode locking has the convenient side effect that the read and
write offsets are updated atomically, so that multiple writing to the same file simultaneously cannot
overwrite each other’s data, though their writes may end up interlaced.

101

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.h#L1
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L30
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L48
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L60
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L88
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L122-L123
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L162-L163
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L94-L96
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L94-L96
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L121-L124
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/file.c#L161-L164

10.14 Code: System calls
With the functions that the lower layers provide, the implementation of most system calls is trivial
(see (5850)). There are a few calls that deserve a closer look.

The functions sys_link and sys_unlink edit directories, creating or removing references
to inodes. They are another good example of the power of using transactions. sys_link (6002)
begins by fetching its arguments, two strings old and new (6007). Assuming old exists and is
not a directory (6011-6014), sys_link increments its ip->nlink count. Then sys_link calls
nameiparent to find the parent directory and final path element of new (6027) and creates a new
directory entry pointing at old ’s inode (6030). The new parent directory must exist and be on the
same device as the existing inode: inode numbers only have a unique meaning on a single disk. If
an error like this occurs, sys_link must go back and decrement ip->nlink.

Transactions simplify the implementation because it requires updating multiple disk blocks,
but we don’t have to worry about the order in which we do them. They either will all succeed or
none. For example, without transactions, updating ip->nlink before creating a link, would put
the file system temporarily in an unsafe state, and a crash in between could result in havoc. With
transactions we don’t have to worry about this.

sys_link creates a new name for an existing inode. The function create (6124) creates a
new name for a new inode. It is a generalization of the three file creation system calls: open with
the O_CREATE flag makes a new ordinary file, mkdir makes a new directory, and mkdev makes a
new device file. Like sys_link, create starts by calling nameiparent to get the inode of the
parent directory. It then calls dirlookup to check whether the name already exists (6089). If the
name does exist, create’s behavior depends on which system call it is being used for: open has
different semantics from mkdir and mkdev. If create is being used on behalf of open (type
== T_FILE) and the name that exists is itself a regular file, then open treats that as a success, so
create does too (6138). Otherwise, it is an error (6139-6140). If the name does not already exist,
create now allocates a new inode with ialloc (6143). If the new inode is a directory, create
initializes it with . and .. entries. Finally, now that the data is initialized properly, create can link
it into the parent directory (6158). create, like sys_link, holds two inode locks simultaneously:
ip and dp. There is no possibility of deadlock because the inode ip is freshly allocated: no other
process in the system will hold ip ’s lock and then try to lock dp.

Using create, it is easy to implement sys_open, sys_mkdir, and sys_mknod. sys_open
(6185) is the most complex, because creating a new file is only a small part of what it can do. If open
is passed the O_CREATE flag, it calls create (6201). Otherwise, it calls namei (6207). create
returns a locked inode, but namei does not, so sys_open must lock the inode itself. This provides
a convenient place to check that directories are only opened for reading, not writing. Assuming the
inode was obtained one way or the other, sys_open allocates a file and a file descriptor (6225) and
then fills in the file (6237-6242). Note that no other process can access the partially initialized file
since it is only in the current process’s table.

Chapter 9 examined the implementation of pipes before we even had a file system. The function
sys_pipe connects that implementation to the file system by providing a way to create a pipe pair.
Its argument is a pointer to space for two integers, where it will record the two new file descriptors.
Then it allocates the pipe and installs the file descriptors.

102

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L124
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L129
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L133-L136
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L149
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L152
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L246
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L256
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L260
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L261-L262
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L265
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L278
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L305
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L320
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L326
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L344
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/sysfile.c#L356-L361

10.15 Real world
The buffer cache in a real-world operating system is significantly more complex than xv6’s, but it
serves the same two purposes: caching and synchronizing access to the disk. Xv6’s buffer cache,
like V6’s, uses a simple least recently used (LRU) eviction policy; there are many more complex
policies that can be implemented, each good for some workloads and not as good for others. A more
efficient LRU cache would eliminate the linked list, instead using a hash table for lookups and a
heap for LRU evictions. Modern buffer caches are typically integrated with the virtual memory
system to support memory-mapped files.

Xv6’s logging system is inefficient. A commit cannot occur concurrently with file-system sys-
tem calls. The system logs entire blocks, even if only a few bytes in a block are changed. It performs
synchronous log writes, a block at a time, each of which is likely to require an entire disk rotation
time. Real logging systems address all of these problems.

Logging is not the only way to provide crash recovery. Early file systems used a scavenger
during reboot (for example, the UNIX fsck program) to examine every file and directory and the
block and inode free lists, looking for and resolving inconsistencies. Scavenging can take hours
for large file systems, and there are situations where it is not possible to resolve inconsistencies in
a way that causes the original system calls to be atomic. Recovery from a log is much faster and
causes system calls to be atomic in the face of crashes.

Xv6 uses the same basic on-disk layout of inodes and directories as early UNIX; this scheme
has been remarkably persistent over the years. BSD’s UFS/FFS and Linux’s ext2/ext3 use essen-
tially the same data structures. The most inefficient part of the file system layout is the directory,
which requires a linear scan over all the disk blocks during each lookup. This is reasonable when
directories are only a few disk blocks, but is expensive for directories holding many files. Microsoft
Windows’s NTFS, macOS’s HFS, and Solaris’s ZFS, just to name a few, implement a directory as
an on-disk balanced tree of blocks. This is complicated but guarantees logarithmic-time directory
lookups.

Xv6 is naive about disk failures: if a disk operation fails, xv6 panics. Whether this is reasonable
depends on the hardware: if an operating systems sits atop special hardware that uses redundancy
to mask disk failures, perhaps the operating system sees failures so infrequently that panicking is
okay. On the other hand, operating systems using plain disks should expect failures and handle
them more gracefully, so that the loss of a block in one file doesn’t affect the use of the rest of the
file system.

Xv6 requires that the file system fit on one disk device and not change in size. As large
databases and multimedia files drive storage requirements ever higher, operating systems are de-
veloping ways to eliminate the “one disk per file system” bottleneck. The basic approach is to
combine many disks into a single logical disk. Hardware solutions such as RAID are still the most
popular, but the current trend is moving toward implementing as much of this logic in software as
possible. These software implementations typically allow rich functionality like growing or shrink-
ing the logical device by adding or removing disks on the fly. Of course, a storage layer that can
grow or shrink on the fly requires a file system that can do the same: the fixed-size array of inode
blocks used by xv6 would not work well in such environments. Separating disk management from
the file system may be the cleanest design, but the complex interface between the two has led some

103

systems, like Sun’s ZFS, to combine them.
Xv6’s file system lacks many other features of modern file systems; for example, it lacks sup-

port for snapshots and incremental backup.
Modern Unix systems allow many kinds of resources to be accessed with the same system calls

as on-disk storage: named pipes, network connections, remotely-accessed network file systems,
and monitoring and control interfaces such as /proc. Instead of xv6’s if statements in fileread
and filewrite, these systems typically give each open file a table of function pointers, one per
operation, and call the function pointer to invoke that inode’s implementation of the call. Network
file systems and user-level file systems provide functions that turn those calls into network RPCs
and wait for the response before returning.

10.16 Exercises
1. Why panic in balloc ? Can xv6 recover?

2. Why panic in ialloc ? Can xv6 recover?

3. Why doesn’t filealloc panic when it runs out of files? Why is this more common and
therefore worth handling?

4. Suppose the file corresponding to ip gets unlinked by another process between sys_link

’s calls to iunlock(ip) and dirlink. Will the link be created correctly? Why or why not?

5. create makes four function calls (one to ialloc and three to dirlink) that it requires
to succeed. If any doesn’t, create calls panic. Why is this acceptable? Why can’t any of
those four calls fail?

6. sys_chdir calls iunlock(ip) before iput(cp->cwd), which might try to lock cp->cwd,
yet postponing iunlock(ip) until after the iput would not cause deadlocks. Why not?

7. Implement the lseek system call. Supporting lseek will also require that you modify
filewrite to fill holes in the file with zero if lseek sets off beyond f->ip->size.

8. Add O_TRUNC and O_APPEND to open, so that > and >> operators work in the shell.

9. Modify the file system to support symbolic links.

10. Modify the file system to support named pipes.

11. Modify the file and VM system to support memory-mapped files.

104

Chapter 11

Concurrency revisited

Simultaneously obtaining good parallel performance, correctness despite concurrency, and under-
standable code is a big challenge in kernel design. Straightforward use of locks is the best path to
correctness, but is not always possible. This chapter highlights examples in which xv6 is forced to
use locks in an involved way, and examples where xv6 uses lock-like techniques but not locks.

11.1 Locking patterns

Cached items are often a challenge to lock. For example, the file system’s block cache (4275)
stores copies of up to NBUF disk blocks. It’s vital that a given disk block have at most one copy
in the cache; otherwise, different processes might make conflicting changes to different copies
of what ought to be the same block. Each cached block is stored in a struct buf (3900). A
struct buf has a lock field which helps ensure that only one process uses a given disk block
at a time. However, that lock is not enough: what if a block is not present in the cache at all,
and two processes want to use it at the same time? There is no struct buf (since the block
isn’t yet cached), and thus there is nothing to lock. Xv6 deals with this situation by associating
an additional lock (bcache.lock) with the set of identities of cached blocks. Code that needs
to check if a block is cached (e.g., bget (4308)), or change the set of cached blocks, must hold
bcache.lock; after that code has found the block and struct buf it needs, it can release
bcache.lock and lock just the specific block. This is a common pattern: one lock for the set of
items, plus one lock per item.

Ordinarily the same function that acquires a lock will release it. But a more precise way to view
things is that a lock is acquired at the start of a sequence that must appear atomic, and released
when that sequence ends. If the sequence starts and ends in different functions, or different threads,
or on different CPUs, then the lock acquire and release must do the same. The function of the lock
is to force other uses to wait, not to pin a piece of data to a particular agent. One example is the
acquire in yield (2629), which is released in the scheduler thread rather than in the acquiring
process. Another example is the acquiresleep in ilock (5153); this code often sleeps while
reading the disk; it may wake up on a different CPU, which means the lock may be acquired and
released on different CPUs.

105

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L26
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/buf.h
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/bio.c#L59
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L491
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L294

Freeing an object that is protected by a lock embedded in the object is a delicate business, since
owning the lock is not enough to guarantee that freeing would be correct. The problem case arises
when some other thread is waiting in acquire to use the object; freeing the object implicitly frees
the embedded lock, which will cause the waiting thread to malfunction. One solution is to track
how many references to the object exist, so that it is only freed when the last reference disappears.
See pipeclose (6661) for an example; pi->readopen and pi->writeopen track whether
the pipe has file descriptors referring to it.

Usually one sees locks around sequences of reads and writes to sets of related items; the locks
ensure that other threads see only completed sequences of updates (as long as they, too, lock).
What about situations where the update is a simple write to a single shared variable? For example,
setkilled and killed (2775) lock around their simple uses of p->killed. If there were no
lock, one thread could write p->killed at the same time that another thread reads it. This is a
race, and the C language specification says that a race yields undefined behavior, which means the
program may crash or yield incorrect results1. The locks prevent the race and avoid the undefined
behavior.

One reason races can break programs is that, if there are no locks or equivalent constructs,
the compiler may generate machine code that reads and writes memory in ways quite different
than the original C code. For example, the machine code of a thread calling killed could copy
p->killed to a register and read only that cached value; this would mean that the thread might
never see any writes to p->killed. The locks prevent such caching.

11.2 Lock-like patterns

In many places xv6 uses a reference count or a flag in a lock-like way to indicate that an object is
allocated and should not be freed or re-used. A process’s p->state acts in this way, as do the
reference counts in file, inode, and buf structures. While in each case a lock protects the flag
or reference count, it is the latter that prevents the object from being prematurely freed.

The file system uses struct inode reference counts as a kind of shared lock that can be held
by multiple processes, in order to avoid deadlocks that would occur if the code used ordinary locks.
For example, the loop in namex (5555) locks the directory named by each pathname component in
turn. However, namex must release each lock at the end of the loop, since if it held multiple locks
it could deadlock with itself if the pathname included a dot (e.g., a/./b). It might also deadlock
with a concurrent lookup involving the directory and ... As Chapter 10 explains, the solution is for
the loop to carry the directory inode over to the next iteration with its reference count incremented,
but not locked.

Some data items are protected by different mechanisms at different times, and may at times be
protected from concurrent access implicitly by the structure of the xv6 code rather than by explicit
locks. For example, when a physical page is free, it is protected by kmem.lock (2973). If the page
is then allocated as a pipe (6622), it is protected by a different lock (the embedded pi->lock). If
the page is re-allocated for a new process’s user memory, it is not protected by a lock at all. Instead,

1“Threads and data races” in https://en.cppreference.com/w/c/language/memory_model

106

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L59
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L611
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L675
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/kalloc.c#L24
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L23
 https://en.cppreference.com/w/c/language/memory_model

the fact that the allocator won’t give that page to any other process (until it is freed) protects it from
concurrent access. The ownership of a new process’s memory is complex: first the parent allocates
and manipulates it in fork, then the child uses it, and (after the child exits) the parent again owns
the memory and passes it to kfree. There are two lessons here: a data object may be protected
from concurrency in different ways at different points in its lifetime, and the protection may take
the form of implicit structure rather than explicit locks.

A final lock-like example is the need to disable interrupts around calls to mycpu() (2187).
Disabling interrupts causes the calling code to be atomic with respect to timer interrupts that could
force a context switch, and thus move the process to a different CPU.

11.3 No locks at all
There are a few places where xv6 shares mutable data with no locks at all. One is in the implemen-
tation of spinlocks, although one could view the RISC-V atomic instructions as relying on locks
implemented in hardware. Another is the started variable in main.c (1156), used to prevent
other CPUs from running until CPU zero has finished initializing xv6; the volatile ensures that
the compiler actually generates load and store instructions.

Xv6 contains cases in which one CPU or thread writes some data, and another CPU or thread
reads the data, but there is no specific lock dedicated to protecting that data. For example, in
fork, the parent writes the child’s user memory pages, and the child (a different thread, perhaps
on a different CPU) reads those pages; no lock explicitly protects those pages. This is not strictly a
locking problem, since the child doesn’t start executing until after the parent has finished writing. It
is a potential memory ordering problem (see Chapter 7), since without a memory barrier there’s no
reason to expect one CPU to see another CPU’s writes. However, since the parent releases locks,
and the child acquires locks as it starts up, the memory barriers in acquire and release ensure
that the child’s CPU sees the parent’s writes.

11.4 Parallelism
Locking is primarily about suppressing parallelism in the interests of correctness. Because per-
formance is also important, kernel designers often have to think about how to use locks in a way
that both achieves correctness and allows parallelism. While xv6 is not systematically designed for
high performance, it’s still worth considering which xv6 operations can execute in parallel, and
which might conflict on locks.

Pipes in xv6 are an example of fairly good parallelism. Each pipe has its own lock, so that dif-
ferent processes can read and write different pipes in parallel on different CPUs. For a given pipe,
however, the writer and reader must wait for each other to release the lock; they can’t read/write
the same pipe at the same time. It is also the case that a read from an empty pipe (or a write to a
full pipe) must block, but this is not due to the locking scheme.

Context switching is a more complex example. Two kernel threads, each executing on its own
CPU, can call yield, sched, and swtch at the same time, and the calls will execute in parallel.

107

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L83
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/main.c#L7

The threads each hold a lock, but they are different locks, so they don’t have to wait for each other.
Once in scheduler, however, the two CPUs may conflict on locks while searching the table
of processes for one that is RUNNABLE. That is, xv6 is likely to get a performance benefit from
multiple CPUs during context switch, but perhaps not as much as it could.

Another example is concurrent calls to fork from different processes on different CPUs. The
calls may have to wait for each other for pid_lock and kmem.lock, and for per-process locks
needed to search the process table for an UNUSED process. On the other hand, the two forking
processes can copy user memory pages and format page-table pages fully in parallel.

The locking scheme in each of the above examples sacrifices parallel performance in certain
cases. In each case it’s possible to obtain more parallelism using a more elaborate design. Whether
it’s worthwhile depends on details: how often the relevant operations are invoked, how long the
code spends with a contended lock held, how many CPUs might be running conflicting operations
at the same time, whether other parts of the code are more restrictive bottlenecks. It can be difficult
to guess whether a given locking scheme might cause performance problems, or whether a new
design is significantly better, so measurement on realistic workloads is often required.

11.5 Exercises
1. Modify xv6’s pipe implementation to allow a read and a write to the same pipe to proceed in

parallel on different CPUs.

2. Modify xv6’s scheduler() to reduce lock contention when different CPUs are looking
for runnable processes at the same time.

3. Eliminate some of the serialization in xv6’s fork().

108

Chapter 12

Summary

This text introduced the main ideas in operating systems by studying one operating system, xv6,
line by line. Some code lines embody the essence of the main ideas (e.g., context switching, user/k-
ernel boundary, locks, etc.) and each line is important; other code lines provide an illustration of
how to implement a particular operating system idea and could easily be done in different ways
(e.g., a better algorithm for scheduling, better on-disk data structures to represent files, better log-
ging to allow for concurrent transactions, etc.). All the ideas were illustrated in the context of one
particular, very successful system call interface, the Unix interface, but those ideas carry over to
the design of other operating systems.

109

110

Bibliography

[1] Linux common vulnerabilities and exposures (CVEs). https://cve.mitre.org/
cgi-bin/cvekey.cgi?keyword=linux.

[2] The RISC-V instruction set manual Volume I: unprivileged specification ISA. https:
//drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_
/view?usp=drive_link, 2024.

[3] The RISC-V instruction set manual Volume II: privileged specification. https:
//drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/
view?usp=drive_link, 2024.

[4] Hans-J Boehm. Threads cannot be implemented as a library. ACM PLDI Conference, 2005.

[5] Edsger Dijkstra. Cooperating sequential processes. https://www.cs.utexas.edu/
users/EWD/transcriptions/EWD01xx/EWD123.html, 1965.

[6] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint.
2012.

[7] Brian W. Kernighan. The C Programming Language. Prentice Hall Professional Technical
Reference, 2nd edition, 1988.

[8] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. Sel4: Formal verification of an OS kernel. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, page 207–220, 2009.

[9] Donald Knuth. Fundamental Algorithms. The Art of Computer Programming. (Second ed.),
volume 1. 1997.

[10] L Lamport. A new solution of dijkstra’s concurrent programming problem. Communications
of the ACM, 1974.

[11] John Lions. Commentary on UNIX 6th Edition. Peer to Peer Communications, 2000.

[12] Paul E. Mckenney, Silas Boyd-wickizer, and Jonathan Walpole. RCU usage in the linux
kernel: One decade later, 2013.

111

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux
https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view?usp=drive_link
https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view?usp=drive_link
https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view?usp=drive_link
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

[13] Martin Michael and Daniel Durich. The NS16550A: UART design and application consid-
erations. http://bitsavers.trailing-edge.com/components/national/
_appNotes/AN-0491.pdf, 1987.

[14] Aleph One. Smashing the stack for fun and profit. http://phrack.org/issues/49/
14.html#article.

[15] David Patterson and Andrew Waterman. The RISC-V Reader: an open architecture Atlas.
Strawberry Canyon, 2017.

[16] Dave Presotto, Rob Pike, Ken Thompson, and Howard Trickey. Plan 9, a distributed system.
In In Proceedings of the Spring 1991 EurOpen Conference, pages 43–50, 1991.

[17] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing system. Commun. ACM,
17(7):365–375, July 1974.

112

http://bitsavers.trailing-edge.com/components/national/_appNotes/AN-0491.pdf
http://bitsavers.trailing-edge.com/components/national/_appNotes/AN-0491.pdf
http://phrack.org/issues/49/14.html#article
http://phrack.org/issues/49/14.html#article

Index

., 100, 102

.., 100, 102
/init, 40
_entry, 28

absorption, 94
acquire, 67, 71
address space, 26
argc, 40
argv, 40
atomic, 67

balloc, 95, 97
batching, 93
bcache.head, 91
begin_op, 94
bfree, 95
bget, 91
binit, 91
block, 90
bmap, 99
bottom half, 57
bread, 91, 92
brelse, 91, 92
BSIZE, 99
buf, 91
bwrite, 91, 92, 94

chan, 83
child, 11
commit, 93
concurrency, 63
concurrency control, 63
condition, 81

condition lock, 82
conditional synchronization, 81
conflict, 66
contention, 66
copy-on-write (COW) fork, 53
copyinstr, 48
copyout, 40
CPU, 9
cpu->context, 78
crash recovery, 89
create, 102
critical section, 66
current directory, 17

deadlock, 69
demand paging, 53
direct blocks, 99
direct memory access (DMA), 60
dirlink, 100
dirlookup, 99, 100, 102
DIRSIZ, 99
disk, 91
driver, 57
dup, 101

ecall, 23, 27
ELF format, 39
ELF_MAGIC, 40
end_op, 94
exception, 43
exec, 12–14
exit, 12, 85

file descriptor, 13

113

filealloc, 101
fileclose, 101
filedup, 101
fileread, 101, 104
filestat, 101
filewrite, 95, 101, 104
fork, 11, 13, 14, 101
forkret, 79
freerange, 37
fsck, 103
fsinit, 95
ftable, 101

getcmd, 12
group commit, 93
guard page, 35

handler, 43
hartid, 79

I/O, 13
I/O concurrency, 59
I/O redirection, 14
ialloc, 97, 102
iget, 96, 97, 99
ilock, 96, 97, 100
indirect block, 99
initlog, 95
inode, 17, 90, 95
install_trans, 94
interface design, 9
interrupt, 43
iput, 96, 97
isolation, 21
itable, 96
itrunc, 97, 99
iunlock, 97

kalloc, 38
kernel, 9, 23
kernel space, 9, 23
kexec, 40
kfree, 37
kinit, 37

kvminit, 36
kvminithart, 36
kvmmake, 36
kvmmap, 36

lazy allocation, 51
links, 17
loadseg, 40
lock, 63
log, 93
log_write, 94
lost wake-up, 82

machine mode, 23
main, 36, 37, 91
malloc, 13
mappages, 36
memory barrier, 71
memory model, 71
memory-mapped, 35, 57
memory-mapped files, 54
metadata, 18
microkernel, 24
mkdev, 102
mkdir, 102
mkfs, 90
monolithic kernel, 21, 23
multi-core, 21
multiplexing, 75
multiprocessor, 21
mutual exclusion, 65
mycpu, 79
myproc, 79

namei, 39, 102
nameiparent, 100, 102
namex, 100
NBUF, 91
NDIRECT, 99
NINDIRECT, 99

O_CREATE, 102
open, 101, 102

p->killed, 86

114

p->kstack, 27
p->lock, 77–79, 83
p->pagetable, 27
p->state, 27, 78
p->xxx, 27
page, 31
page table entries (PTEs), 31
page-fault exception, 32, 52
paging area, 54
paging to disk, 54
parent, 11
path, 17
persistence, 89
PGROUNDUP, 37
physical address, 26
PHYSTOP, 36, 37
PID, 11
pipe, 16
piperead, 84
pipewrite, 84
polling, 60
pop_off, 71
printf, 12
privileged instructions, 23
proc_mapstacks, 36
proc_pagetable, 40
process, 9, 26
programmed I/O, 60
PTE_R, 33
PTE_U, 33
PTE_V, 33
PTE_W, 33
PTE_X, 33
push_off, 71

race, 65, 106
read, 101
readi, 40, 99
recover_from_log, 95
release, 67, 71
root, 17
round robin, 79
RUNNABLE, 83, 85

satp, 33
sbrk, 13
scause, 44
sched, 77–79, 83
scheduler, 78
sector, 90
sepc, 44
sequence coordination, 81
serializing, 66
sfence.vma, 37
shell, 10
signal, 88
skipelem, 100
sleep, 83
sleep-locks, 72
SLEEPING, 83
sret, 27
sscratch, 44
sstatus, 44
stat, 99, 101
stati, 99, 101
struct cpu, 79
struct dinode, 96, 98
struct dirent, 99
struct elfhdr, 39
struct file, 101
struct inode, 96
struct pipe, 84
struct proc, 27
struct run, 37
struct spinlock, 67
stval, 51
stvec, 44
superblock, 90
supervisor mode, 23
swtch, 77–79
sys_link, 102
sys_mkdir, 102
sys_mknod, 102
sys_open, 102
sys_pause, 70
sys_pipe, 102

115

sys_unlink, 102
SYS_write, 47
syscall, 47
system call, 9

T_DIR, 99
T_FILE, 102
thread, 27
ticks, 70
tickslock, 70
time-share, 10, 21
top half, 57
TRAMPOLINE, 46
trampoline, 27, 46
transaction, 89
Translation Look-aside Buffer (TLB), 33, 36
transmit complete, 58
trap, 43
trapframe, 27
type cast, 38

UART, 57

undefined behavior, 106
unlink, 94
user memory, 26
user mode, 23
user space, 9, 23
ustack, 40
uvmalloc, 40

valid, 91
vector, 43
virtio_disk_rw, 91, 92
virtual address, 26

wait, 12, 85
wait channel, 81
wakeup, 70, 83
walk, 36
walkaddr, 40
write, 94, 101
writei, 95, 99

ZOMBIE, 85

116

	Operating system interfaces
	Processes and memory
	I/O and File descriptors
	Pipes
	File system
	Real world
	Exercises

	Operating system organization
	Abstracting physical resources
	User mode, supervisor mode, and system calls
	Kernel organization
	Code: xv6 organization
	Process overview
	Code: starting xv6, the first process and system call
	Security Model
	Real world
	Exercises

	Page tables
	Paging hardware
	Kernel address space
	Code: creating an address space
	Physical memory allocation
	Code: Physical memory allocator
	Process address space
	Code: exec
	Real world
	Exercises

	Traps and system calls
	RISC-V trap machinery
	Traps from user space
	Code: Calling system calls
	Code: System call arguments
	Traps from kernel space
	Real world
	Exercises

	Page faults
	Lazy allocation
	Code
	Real world: Copy-On-Write (COW) fork
	Real world: Demand paging
	Real world: Memory-mapped files
	Exercises

	Interrupts and device drivers
	Code: Console input
	Code: Console output
	Concurrency in drivers
	Timer interrupts
	Real world
	Exercises

	Locking
	Races
	Code: Locks
	Code: Using locks
	Deadlock and lock ordering
	Locks and interrupts
	Instruction and memory ordering
	Sleep locks
	Real world
	Exercises

	Scheduling
	Multiplexing
	Context switch overview
	Code: Context switching
	Code: Scheduling
	Code: mycpu and myproc
	Real world
	Exercises

	Sleep and Wakeup
	Overview
	Code: Sleep and wakeup
	Code: Pipes
	Code: Wait, exit, and kill
	Process Locking
	Real world
	Exercises

	File system
	Overview
	Buffer cache layer
	Code: Buffer cache
	Logging layer
	Log design
	Code: logging
	Code: Block allocator
	Inode layer
	Code: Inodes
	Code: Inode content
	Code: directory layer
	Code: Path names
	File descriptor layer
	Code: System calls
	Real world
	Exercises

	Concurrency revisited
	Locking patterns
	Lock-like patterns
	No locks at all
	Parallelism
	Exercises

	Summary

