
Project #5: FullFS

Hyeongtak Ji

Systems Software & 
Architecture Lab.

Seoul National University

2024.12.06



2

The xv6 file system

▪ The xv6 file system provides Unix-like files, directories, and pathnames, 

and stores its data on a virtio disk for persistence

• B: Boot block (1 block)

• S: Superblock (1 block)

• L: Log blocks (30 blocks) 

• I: Inode blocks (13 blocks) 

• M: Free bitmap blocks (1 block) 

• D: Data blocks (1954 blocks)

< Structure of the xv6 file system>

< Representation of a file on disk>



3

Traditional Pathname Lookup

▪ Hierarchical traversal: Path resolution starts at the root (‘/’) for 

absolute paths or the current directory for relative paths, traversing 

each component sequentially

▪ Step-by-step inode lookup: At each step, the system accesses the 

current directory's inode, searches for the next component, and 

retrieves its inode until the final component is resolved.

/

home bin foo

user ls bash

A

B



4

Full-Path Indexing

▪ Direct lookup: Files and directories are indexed by their full path, 

enabling direct lookup without hierarchical traversal

▪ Advantages: Reduces the overhead of resolving deep or complex 

paths by eliminating intermediate steps

/

/home /home/user/A /bin foo/home/user /bin/ls /bin/bash/home/user/A/B



5

FullFS Design

▪ All files and directories are stored in the single root directory, eliminating 

the traditional hierarchical file system

▪ Directory entry design
• Each entry stores the inode number and the full path

• Each directory entry is fixed at 128 bytes in size



6

FullFS Design (cont’d)

 Subdirectories do not have their own directory entries
 Again, the only directory that has directory entries is the “/”

 But… must still satisfy the following requirements:
• A parent directory must exist to create files or subdirectories

– e.g., creating “/foo/bar.txt” is allowed only if a directory named “/foo” exists

• Support complex paths including ‘.’ and ‘..’
– /home/user/../../bin/./ls, /..//../../bin/ls, …

• Fully support commands with relative path like
– $ cd ..
– $ ../cat ../README

• Hint: run $ usertests -q



7

Project#5: FullFS

▪ In this project, you have to

1. Modify the mkfs utility (10 points)

2. Implement full-path indexing (60 points)

3. Modify the ls command (20 points)

4. Design document (10 points)

5. And, there is a bonus (up to 20 points)

▪ Due date is 11:59 PM, December 22 (Sunday)



8

1. Modify the mkfs Utility

▪ You should modify mkfs to set up the FullFS

▪ You may need to consider disk layout changes

▪ About superblock…
• You may add fields to the superblock

• Do not change the location of superblock

• Do not change the names of existing variables (e.g. magic, size, inodestart, …)

▪ The root directory should store all entries
• ‘.’, ‘..’ should be excluded



9

2. Implement Full-Path Indexing 

▪ Modify the file system so that all system calls operate correctly with the 

new directory structure

▪ Implement path resolution logic that handles both absolute and relative 

paths correctly
• Traditional ‘.’ and ‘..’ entries are not stored in the directory, though



10

2. Implement Full-Path Indexing (cont’d) 

▪ Implement pwd() system call
• The system call number of pwd() is already assigned to 23

▪ int pwd(char *buf)

▪ pwd() returns the absolute pathname of the current working directory 

for the calling process
• The pathname is stored in the buffer provided by the argument buf



11

3. Modify the ls command

 Modify the ls command to display directory contents as if they exist in a 

hierarchical structure

 The ls command must correctly interpret and display the contents of 

directories as if they existed hierarchically
• $ ls /home should display the entries within the /home directory

 See the README file for detailed examples and expected output formats

https://github.com/snu-csl/os-pa5?tab=readme-ov-file#examples


12

▪ You need to prepare and submit the design document for your 

implementation

▪ You should explain what you have considered, and what you have done

▪ Requirements

• New data structures

• Algorithm design

• Testing and validation

4. Design Document



13

▪ Students with perfect scores on part 1, 2, and 3 in the grading server 

qualify for bonus points

▪ We will evaluate the average execution time of the open() system call
• Using rdtime(), with the QEMU option “-icount shift=0”

▪ The top five fastest implementations will receive 20 bonus points, and 

the next five will earn 10 points — prove you’ve got the speed!

▪ Note: using hashing can be an option, but…
• Ensure at least one byte-to-byte pathname comparison to avoid false positives

• Any submissions without this comparison will NOT BE ELIGIBLE for bonus 

points

5. Bonus



14

Restrictions

▪ Please use QEMU version 8.2.0 or later

▪ Your implementation should pass usertests on multi-processor 

RISC-V systems (i.e., CPUS > 1)

• Some irrelevant test cases in the usertests suite have been disabled

▪ Please remove all the debugging outputs before you submit



15

Tips

▪ Read Chap. 8 of the xv6 book to understand the file system in xv6

▪ For your reference, the following roughly shows the amount of 

changes you need to make for this project assignment 

▪ Each “+” symbol indicates 1~10 lines of code that should be added, 

deleted, or altered

http://csl.snu.ac.kr/courses/4190.307/2024-2/book-riscv-rev4.pdf


16

Skeleton Code

▪ Skeleton Code

• You should work on the pa5 branch of the xv6-riscv-snu repository as follows:

▪ The pa5 branch includes two user-level program, pwd and fsperf

• pwd simply calls the pwd() system call and prints its result

• fsperf is a program designed to evaluate file system performance

• Note: A different program, not fsperf, will be used for bonus point evaluations

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa5



17

Notification

▪ Due
• 11:59 PM, December 22 (Sunday)

▪ Any attempt to copy others' work will result in a heavy penalty

▪ Submission
• Run the make submit command to generate a tarball

named xv6-pa5-{STUDENTID}.tar.gz in the xv6-riscv-snu directory

• Upload the compressed file to the submission server

• The total number of submissions for this project will be limited to 50

• Only the version marked FINAL will be considered for the project score



Thank you!


