
Project #5: FullFS

Hyeongtak Ji

Systems Software & 
Architecture Lab.

Seoul National University

2024.12.06



2

The xv6 file system

▪ The xv6 file system provides Unix-like files, directories, and pathnames, 

and stores its data on a virtio disk for persistence

• B: Boot block (1 block)

• S: Superblock (1 block)

• L: Log blocks (30 blocks) 

• I: Inode blocks (13 blocks) 

• M: Free bitmap blocks (1 block) 

• D: Data blocks (1954 blocks)

< Structure of the xv6 file system>

< Representation of a file on disk>



3

Traditional Pathname Lookup

▪ Hierarchical traversal: Path resolution starts at the root (‘/’) for 

absolute paths or the current directory for relative paths, traversing 

each component sequentially

▪ Step-by-step inode lookup: At each step, the system accesses the 

current directory's inode, searches for the next component, and 

retrieves its inode until the final component is resolved.

/

home bin foo

user ls bash

A

B



4

Full-Path Indexing

▪ Direct lookup: Files and directories are indexed by their full path, 

enabling direct lookup without hierarchical traversal

▪ Advantages: Reduces the overhead of resolving deep or complex 

paths by eliminating intermediate steps

/

/home /home/user/A /bin foo/home/user /bin/ls /bin/bash/home/user/A/B



5

FullFS Design

▪ All files and directories are stored in the single root directory, eliminating 

the traditional hierarchical file system

▪ Directory entry design
• Each entry stores the inode number and the full path

• Each directory entry is fixed at 128 bytes in size



6

FullFS Design (cont’d)

 Subdirectories do not have their own directory entries
 Again, the only directory that has directory entries is the “/”

 But… must still satisfy the following requirements:
• A parent directory must exist to create files or subdirectories

– e.g., creating “/foo/bar.txt” is allowed only if a directory named “/foo” exists

• Support complex paths including ‘.’ and ‘..’
– /home/user/../../bin/./ls, /..//../../bin/ls, …

• Fully support commands with relative path like
– $ cd ..
– $ ../cat ../README

• Hint: run $ usertests -q



7

Project#5: FullFS

▪ In this project, you have to

1. Modify the mkfs utility (10 points)

2. Implement full-path indexing (60 points)

3. Modify the ls command (20 points)

4. Design document (10 points)

5. And, there is a bonus (up to 20 points)

▪ Due date is 11:59 PM, December 22 (Sunday)



8

1. Modify the mkfs Utility

▪ You should modify mkfs to set up the FullFS

▪ You may need to consider disk layout changes

▪ About superblock…
• You may add fields to the superblock

• Do not change the location of superblock

• Do not change the names of existing variables (e.g. magic, size, inodestart, …)

▪ The root directory should store all entries
• ‘.’, ‘..’ should be excluded



9

2. Implement Full-Path Indexing 

▪ Modify the file system so that all system calls operate correctly with the 

new directory structure

▪ Implement path resolution logic that handles both absolute and relative 

paths correctly
• Traditional ‘.’ and ‘..’ entries are not stored in the directory, though



10

2. Implement Full-Path Indexing (cont’d) 

▪ Implement pwd() system call
• The system call number of pwd() is already assigned to 23

▪ int pwd(char *buf)

▪ pwd() returns the absolute pathname of the current working directory 

for the calling process
• The pathname is stored in the buffer provided by the argument buf



11

3. Modify the ls command

 Modify the ls command to display directory contents as if they exist in a 

hierarchical structure

 The ls command must correctly interpret and display the contents of 

directories as if they existed hierarchically
• $ ls /home should display the entries within the /home directory

 See the README file for detailed examples and expected output formats

https://github.com/snu-csl/os-pa5?tab=readme-ov-file#examples


12

▪ You need to prepare and submit the design document for your 

implementation

▪ You should explain what you have considered, and what you have done

▪ Requirements

• New data structures

• Algorithm design

• Testing and validation

4. Design Document



13

▪ Students with perfect scores on part 1, 2, and 3 in the grading server 

qualify for bonus points

▪ We will evaluate the average execution time of the open() system call
• Using rdtime(), with the QEMU option “-icount shift=0”

▪ The top five fastest implementations will receive 20 bonus points, and 

the next five will earn 10 points — prove you’ve got the speed!

▪ Note: using hashing can be an option, but…
• Ensure at least one byte-to-byte pathname comparison to avoid false positives

• Any submissions without this comparison will NOT BE ELIGIBLE for bonus 

points

5. Bonus



14

Restrictions

▪ Please use QEMU version 8.2.0 or later

▪ Your implementation should pass usertests on multi-processor 

RISC-V systems (i.e., CPUS > 1)

• Some irrelevant test cases in the usertests suite have been disabled

▪ Please remove all the debugging outputs before you submit



15

Tips

▪ Read Chap. 8 of the xv6 book to understand the file system in xv6

▪ For your reference, the following roughly shows the amount of 

changes you need to make for this project assignment 

▪ Each “+” symbol indicates 1~10 lines of code that should be added, 

deleted, or altered

http://csl.snu.ac.kr/courses/4190.307/2024-2/book-riscv-rev4.pdf


16

Skeleton Code

▪ Skeleton Code

• You should work on the pa5 branch of the xv6-riscv-snu repository as follows:

▪ The pa5 branch includes two user-level program, pwd and fsperf

• pwd simply calls the pwd() system call and prints its result

• fsperf is a program designed to evaluate file system performance

• Note: A different program, not fsperf, will be used for bonus point evaluations

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa5



17

Notification

▪ Due
• 11:59 PM, December 22 (Sunday)

▪ Any attempt to copy others' work will result in a heavy penalty

▪ Submission
• Run the make submit command to generate a tarball

named xv6-pa5-{STUDENTID}.tar.gz in the xv6-riscv-snu directory

• Upload the compressed file to the submission server

• The total number of submissions for this project will be limited to 50

• Only the version marked FINAL will be considered for the project score



Thank you!


