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§ Zswap is a lightweight compressed cache for swap pages

§ It takes pages that are in the process of being swapped out
and attempts to compress them into a memory pool

§ It basically trades CPU cycles for potentially reduced swap I/O
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§ Similar to Linux’s Zswap, Xswap provides a compressed memory cache 
for swap pages

§ xv6 reserves a portion of physical memory for storing swapped-out 
pages (unlike Zswap)
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§ The default compressor for Linux Zswap

§ You can use the following LZO routines available in ./kernel/lzo.c

§ The algorithm requires 16KB of working memory, and the parameter 
named wrkmem specifies its starting address

int lzo1x_compress(const unsigned char *src, uint32 src_len,
unsigned char *dst, uint32 *dst_len, void *wrkmem);

int lzo1x_decompress(const unsigned char *src, uint32 src_len,
unsigned char *dst, uint32 *dst_len);
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§ Page frames in ZONE_NORMAL
• User code/data/stack/heap pages
• Different from swappable pages in Linux

§ During swapping, the victim page is selected based on the
FIFO replacement policy among all pages in ZONE_NORMAL
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§ If the kernel calls kalloc() but there are no available frames in 
ZONE_NORMAL

§ The kalloc() function internally calls swapout() when it detects that 
there are no available frames

ZONE_ZMEM

ZONE_NORMAL
swap-out



7

§ If the swapped-out pages are later needed, the kernel calls the
swapin() function to restore the pages

§ Note that swapin() may require an additional swapout()

ZONE_ZMEM

ZONE_NORMAL swap-inswap-out
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§ scause

§ stval
• When a page fault exception occurs on an instruction fetch, load, or store,

stval will contain the faulting virtual address

Exception code Description

… …

8 Environment call (syscall)

9 - 11 Reserved

12 Instruction page fault

13 Load page fault

14 Reserved

15 Store page fault

>= 16 Reserved
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§ xv6 uses 39-bit address system called Sv39
§ 3-level page table

Page Offset

12

PPN[1]

9

PPN[0]

9

PPN[1]

9

Page Offset

12

PPN[1]

9

PPN[0]

9

PPN[2]

26

Sv39 Virtual Address

Sv39 Physical Address
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PTE
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…
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PTE
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…
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PTE
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…
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satp
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9
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§ Page table entry bits
• D: Dirty bit
• A: Access bit
• G: Global bit
• U: User bit
• X: Execute bit
• W: Write bit
• R: Read bit
• V: Valid bit

§ If X, W, and R are all 0, the PTE is a pointer to next level
§ The RSW field is reserved for use by supervisor software
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ZONE_ZMEM

ZONE_NORMAL

PTE

PTE
PTE
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→ PF
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ZONE_ZMEM

ZONE_NORMAL

PTE

PTE
PTE

PTE
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ZONE_ZMEM

ZONE_NORMAL

PTE

PTE
PTE

PTEaccess (retry)
→ OK
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1. Implement new physical memory allocators (20 points)

§ It allocates a 4MB frame from the specified memory zone
§ Returns the start address on success and 0 on failure

§ It frees the 4KB page frame starting at the specified address pa
§ If the address pa does not belong to the specified zone or was not 

previously allocated, it should trigger panic(“kfree”)

void *kalloc(int zone);

void kfree(void *pa, int zone);
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1. Implement new physical memory allocators (20 points) (cont’d)

§ It allocates a physical memory block with the specified type
§ Returns the start address on success and 0 on failure

§ It frees the page frame starting at the specified address pa
§ If the address pa does not belong to ZONE_ZMEM or was not 

previously allocated, it should trigger panic(“zfree”)

void *zalloc(int type);

void zfree(void *pa, int type);
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1. Implement new physical memory allocators (20 points) (cont’d)
• When zalloc() is called, you should maximize the number of allocatable 4KB frames

4KB A 4KB frame allocated

One of the two 2KB frames allocated

No frames allocated

2KB

A newly allocated 2KB frame
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1. Implement new physical memory allocators (20 points) (cont’d)

§ It provides information on the status of memory allocation and 
swapping

§ For Part 1, nswapin and nswapout can be left as zero

int memstat(int *n4k, int *z4k, int *z2k, int *swapin, int *swapout);
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2. Enable swapping functionality (50 points)
§ Please refer to the contents in the previous pages
§ Additionally, you need to ensure that nswapin and nswapout track the 

number of swap-in and swap-out operations performed, respectively
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3. Support compressed swapping and ensure no memory leaks (20 points)
§ You will extend the swapping functionality to support compressed 

swapping using the LZO library
• If the compressed size ≤ 2KB, the compressed data will be stored in a 2KB frame
• Otherwise, the original data will be copied in a 4KB frame

§ You must also ensure that your implementation is free from memory 
leaks
• Whenever you return to the shell after executing a command, the sum of allocation 

counts should remain the same
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4. Design Document (10 points)
1. New data structures
2. Algorithm design
3. Testing and validation
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Bonus (up to additional 20 points)
§ If you ensure that swapping works correctly on a multi-core system,

you can earn an additional 20-point bonus
§ We will use various testcases
§ We will run your implementation multiple times to detect bugs that 

appear occasionally
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§ Tips
• Read Chap. 3 and 4 of the xv6 book to understand the virtual memory subsystem 

and page-fault exceptions in xv6
• Use the following programs to test you implementation

– $ forktest
– $ swaptest
– $ usertests –q

• Understand the xv6 source code well enough before you start making fixes
• Start the assignments early!

http://csl.snu.ac.kr/courses/4190.307/2024-2/book-riscv-rev4.pdf
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§ Restrictions
• For Part 1 ~ 3, you may assume that xv6 is running on a single-core system
• For Part 1 and 2, we will run your code without any special compiler options
• For Part 3, we will use the –DPART3 compiler option
• For the bonus, we will use the –DMULTI compiler option along with –DPART3
• You should use the QEMU version 8.2.0 or higher
• You are required to modify only the files in the ./kernel directory
• If you have created your own test cases, place them in the ./user directory and 

mention them in your documentation
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§ Skeleton Code
• You should work on the pa4 branch of the xv6-riscv-snu repository as follows:

• The skeleton code includes new files in the ./kernel directory
– lzo.c: the LZO compression/decompression library
– xswap.h, xswap.c: stuff related to swapping

• The pa4 branch also includes a user-level program called swaptest, which can be 
built from ./user/swaptest.c

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa4
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§ Due
• 11:59 PM, November 24 (Sunday)

§ Submission
• Run make submit to generate a tarball

named xv6-pa4-{STUDENTID}.tar.gz in the xv6-riscv-snu directory
• Upload the compressed file to the submission server
• The total number of submissions for this project will be limited to 30
• Only the version marked FINAL will be considered for the project score
• The grading server will no longer accept submissions after three days past the 

deadline



Thank you!


