
Project #4: Xswap: 
Compressed Swap for xv6

Injae Kang

(abcinje@snu.ac.kr)

Systems Software &

Architecture Lab.

Seoul National University

2024.11.11.



2

§ Zswap is a lightweight compressed cache for swap pages

§ It takes pages that are in the process of being swapped out
and attempts to compress them into a memory pool

§ It basically trades CPU cycles for potentially reduced swap I/O



3

§ Similar to Linux’s Zswap, Xswap provides a compressed memory cache 
for swap pages

§ xv6 reserves a portion of physical memory for storing swapped-out 
pages (unlike Zswap)

kernel code

kernel data

0x80000000

end

PHYSTOP

ZONE_NORMAL

kernel code

kernel data

0x80000000

end

PHYSTOP

ZONE_FIXED (space for kernel pages)

(space for user pages)

ZONE_ZMEM

ZMEMSTOP
(space for compressed swap)

NORMAL_START



4

§ The default compressor for Linux Zswap

§ You can use the following LZO routines available in ./kernel/lzo.c

§ The algorithm requires 16KB of working memory, and the parameter 
named wrkmem specifies its starting address

int lzo1x_compress(const unsigned char *src, uint32 src_len,
unsigned char *dst, uint32 *dst_len, void *wrkmem);

int lzo1x_decompress(const unsigned char *src, uint32 src_len,
unsigned char *dst, uint32 *dst_len);



5

§ Page frames in ZONE_NORMAL
• User code/data/stack/heap pages
• Different from swappable pages in Linux

§ During swapping, the victim page is selected based on the
FIFO replacement policy among all pages in ZONE_NORMAL



6

§ If the kernel calls kalloc() but there are no available frames in 
ZONE_NORMAL

§ The kalloc() function internally calls swapout() when it detects that 
there are no available frames

ZONE_ZMEM

ZONE_NORMAL
swap-out



7

§ If the swapped-out pages are later needed, the kernel calls the
swapin() function to restore the pages

§ Note that swapin() may require an additional swapout()

ZONE_ZMEM

ZONE_NORMAL swap-inswap-out



8

§ scause

§ stval
• When a page fault exception occurs on an instruction fetch, load, or store,

stval will contain the faulting virtual address

Exception code Description

… …

8 Environment call (syscall)

9 - 11 Reserved

12 Instruction page fault

13 Load page fault

14 Reserved

15 Store page fault

>= 16 Reserved



9

§ xv6 uses 39-bit address system called Sv39
§ 3-level page table

Page Offset

12

PPN[1]

9

PPN[0]

9

PPN[1]

9

Page Offset

12

PPN[1]

9

PPN[0]

9

PPN[2]

26

Sv39 Virtual Address

Sv39 Physical Address



10

PTE
PTE
…

PTE

PTE
PTE
…

PTE

PTE
PTE
…

PTE

satp

Level 2 Level 1 Level 0

Reserved

10

PPN[2]

26

PPN[1]

9

PPN[0]

9

RSW

2

D

1

A

1

G

1

U

1

X

1

W

1

R

1

V

1



11

§ Page table entry bits
• D: Dirty bit
• A: Access bit
• G: Global bit
• U: User bit
• X: Execute bit
• W: Write bit
• R: Read bit
• V: Valid bit

§ If X, W, and R are all 0, the PTE is a pointer to next level
§ The RSW field is reserved for use by supervisor software

Reserved

10

PPN[2]

26

PPN[1]

9

PPN[0]

9

RSW

2

D

1

A

1

G

1

U

1

X

1

W

1

R

1

V

1



12

ZONE_ZMEM

ZONE_NORMAL

PTE

PTE
PTE

PTEaccess
→ PF



13

ZONE_ZMEM

ZONE_NORMAL

PTE

PTE
PTE

PTE



14

ZONE_ZMEM

ZONE_NORMAL

PTE

PTE
PTE

PTEaccess (retry)
→ OK



15

1. Implement new physical memory allocators (20 points)

§ It allocates a 4MB frame from the specified memory zone
§ Returns the start address on success and 0 on failure

§ It frees the 4KB page frame starting at the specified address pa
§ If the address pa does not belong to the specified zone or was not 

previously allocated, it should trigger panic(“kfree”)

void *kalloc(int zone);

void kfree(void *pa, int zone);



16

1. Implement new physical memory allocators (20 points) (cont’d)

§ It allocates a physical memory block with the specified type
§ Returns the start address on success and 0 on failure

§ It frees the page frame starting at the specified address pa
§ If the address pa does not belong to ZONE_ZMEM or was not 

previously allocated, it should trigger panic(“zfree”)

void *zalloc(int type);

void zfree(void *pa, int type);



17

1. Implement new physical memory allocators (20 points) (cont’d)
• When zalloc() is called, you should maximize the number of allocatable 4KB frames

4KB A 4KB frame allocated

One of the two 2KB frames allocated

No frames allocated

2KB

A newly allocated 2KB frame



18

1. Implement new physical memory allocators (20 points) (cont’d)

§ It provides information on the status of memory allocation and 
swapping

§ For Part 1, nswapin and nswapout can be left as zero

int memstat(int *n4k, int *z4k, int *z2k, int *swapin, int *swapout);



19

2. Enable swapping functionality (50 points)
§ Please refer to the contents in the previous pages
§ Additionally, you need to ensure that nswapin and nswapout track the 

number of swap-in and swap-out operations performed, respectively



20

3. Support compressed swapping and ensure no memory leaks (20 points)
§ You will extend the swapping functionality to support compressed 

swapping using the LZO library
• If the compressed size ≤ 2KB, the compressed data will be stored in a 2KB frame
• Otherwise, the original data will be copied in a 4KB frame

§ You must also ensure that your implementation is free from memory 
leaks
• Whenever you return to the shell after executing a command, the sum of allocation 

counts should remain the same



21

4. Design Document (10 points)
1. New data structures
2. Algorithm design
3. Testing and validation



22

Bonus (up to additional 20 points)
§ If you ensure that swapping works correctly on a multi-core system,

you can earn an additional 20-point bonus
§ We will use various testcases
§ We will run your implementation multiple times to detect bugs that 

appear occasionally



23

§ Tips
• Read Chap. 3 and 4 of the xv6 book to understand the virtual memory subsystem 

and page-fault exceptions in xv6
• Use the following programs to test you implementation

– $ forktest
– $ swaptest
– $ usertests –q

• Understand the xv6 source code well enough before you start making fixes
• Start the assignments early!

http://csl.snu.ac.kr/courses/4190.307/2024-2/book-riscv-rev4.pdf


24

§ Restrictions
• For Part 1 ~ 3, you may assume that xv6 is running on a single-core system
• For Part 1 and 2, we will run your code without any special compiler options
• For Part 3, we will use the –DPART3 compiler option
• For the bonus, we will use the –DMULTI compiler option along with –DPART3
• You should use the QEMU version 8.2.0 or higher
• You are required to modify only the files in the ./kernel directory
• If you have created your own test cases, place them in the ./user directory and 

mention them in your documentation



25

§ Skeleton Code
• You should work on the pa4 branch of the xv6-riscv-snu repository as follows:

• The skeleton code includes new files in the ./kernel directory
– lzo.c: the LZO compression/decompression library
– xswap.h, xswap.c: stuff related to swapping

• The pa4 branch also includes a user-level program called swaptest, which can be 
built from ./user/swaptest.c

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa4



26

§ Due
• 11:59 PM, November 24 (Sunday)

§ Submission
• Run make submit to generate a tarball

named xv6-pa4-{STUDENTID}.tar.gz in the xv6-riscv-snu directory
• Upload the compressed file to the submission server
• The total number of submissions for this project will be limited to 30
• Only the version marked FINAL will be considered for the project score
• The grading server will no longer accept submissions after three days past the 

deadline



Thank you!


