
Project #2: System Calls

Injae Kang

(abcinje@snu.ac.kr)

Systems Software &

Architecture Lab.

Seoul National University

2024.09.27.



2

▪ User applications can access the operating system kernel

in a restricted way

▪ The interfaces that allow user applications to request services

from the operating system kernel

▪ The operating system kernel does the requested task

on behalf of user applications



3

▪ Machine Mode (M-mode)

• CPU starts in machine mode

▪ Supervisor Mode (S-mode)

• Allowed to execute privileged instructions

– Enable/Disable interrupts

– Modify the page table base register

– …

• The operating system kernel runs in supervisor mode

▪ User Mode (U-mode)

• User processes run in user mode



4

▪ User applications execute the ecall instruction to invoke system calls

▪ E.g., fork()

fork:
li a7, SYS_fork
ecall
ret

(Kernel Mode)

Syscall Routine



5

ecall
User Space

Kernel Space

uservec() usertrap() syscall() usertrapret() userret()

devintr()

next

instr

scause

▪ U-mode → S-mode



6

▪ satp

• Pointer to page table

▪ scause (mcause)

• Event which caused a trap

▪ sepc (mepc)

• Program counter when a trap occurs

▪ sscratch (mscratch)

• A dedicated register for use by supervisor (machine) mode

▪ stvec (mtvec)

• Pointer to trap vector



7

▪ The RISC-V hart performs all these steps as a single operation

• Copy the pc into sepc

• Set scause to reflect the trap's cause

• Set the stval if necessary (e.g., fault address)

• Set the mode to supervisor

• Copy stvec (which is uservec() in xv6) to the pc

• Start executing at the new pc

• Note: the hart doesn't save any registers other than the pc



8

▪ Start in supervisor mode

▪ Save registers values to trapframe

▪ Initialize kernel stack pointer

▪ Install the kernel page table

▪ Jump to usertrap()



9

▪ Install the kernel trap vector

▪ Save user program counter

▪ Handle an interrupt, exception, or system call

depending on the value of scause register

▪ Call usertrapret() when it is done



10

▪ Install the user trap vector

▪ Restore user program counter

▪ Jump to userret()



11

▪ Switch to the user page table

▪ Restore registers from trapframe

▪ Return to user mode



12

▪ The RISC-V hart performs all these steps as a single operation

• Copy the sepc into pc

• Start executing at the new pc



13

▪ Physical Memory Protection (PMP)

• A hardware feature that provides fine-grained control over access to memory

regions

• It allows the system to define a set of rules governing which memory regions can

be accessed by different privilege levels (such as U-mode or S-mode)

• RISC-V supports up to 64 PMP entries, with each PMP entry defined by an 8-bit

configuration register (e.g., pmp0cfg) and a corresponding 64-bit address register

(e.g., pmpaddr0)

• Each bit in the PMP configuration register specifies whether the corresponding

memory region has permission for read(R), write(W), or instruction execution(X)

• PMP address and configuration registers are only accessible in M-mode



14

▪ By default, all traps at any privilege level are handled in M-mode

▪ Setting a bit in medeleg or mideleg will delegate the corresponding

trap, when occurring in S-mode or U-mode, to the S-mode trap handler

▪ xv6 delegates all interrupts and exceptions to S-mode

• When the kernel executes the ecall instruction in S-mode, control is transferred 

to the S-mode trap handler (instead of M-mode trap handler)

• You must make another (nested) system call from S-mode to M-mode

to access PMP registers



15

1. Implement the nenter() system call (30 points)

▪ It returns the total count of [ENTER] key presses from the console 

input device since the system booted

▪ The system call number is already assigned to 22

int nenter();



16

2. Implement the getpmpaddr() system call (50 points)

▪ It returns the 64-bit physical address stored in the PMP address register

▪ The first (and the only) parameter denotes the index of the PMP 

address register

• E.g., 0 for pmpaddr0, 1 for pmpaddr1, etc

▪ The system call number is already assigned to 23

void *getpmpaddr(int n);



17

3. Implement the getpmpcfg() system call (20 points)

▪ It returns an integer, where the lower 8 bits represent the content of 

the specified PMP configuration register

▪ The first (and the only) parameter denotes the index of the PMP 

configuration register

• E.g., 0 for pmp0cfg, 1 for pmp1cfg, etc

▪ The system call number is already assigned to 24

int getpmpcfg(int n);



18

3. Implement the getpmpcfg() system call (20 points) (cont’d)

▪ Since individual 8-bit PMP configuration registers cannot be read directly, 

you must read the entire 64-bit pmpcfg0 register



19

▪ Tips

• Read Chap. 4.1 of the xv6 book to understand RISC-V’s privileged modes

and trap handling mechanism

• Read Chap. 4.2 ~ 4.5 of the xv6 book to see how traps are handled in xv6

• Read Chap. 5 of the xv6 book to learn about hardware interrupts

• More detailed information on physical memory protection (PMP) can be found in 

Chap. 3.7 of the RISC-V Privileged Architecture manual

http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf
http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf
http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf
http://csl.snu.ac.kr/courses/4190.307/2024-2/priv-isa-asciidoc_20240411.pdf


20

▪ You may want to consult:
• kernel/console.c

– Console-related functions

• kernel/kernelvec.S
– M-mode and S-mode trap vectors

• kernel/riscv.h
– Architecture-dependent codes

• kernel/start.c
– xv6 kernel boot up code

• kernel/syscall.c
– General system call handling

• kernel/sysproc.c
– Several system call implementations

• kernel/trap.c
– Trap handling

• And other files if necessary



21

▪ Restrictions

• You should use the QEMU version 8.2.0 or higher

• Do not change the predefined system call numbers

• You only need to change the files in the kernel directory

• Do not change the kernel/pmp.c file



22

▪ Skeleton Code

• You should work on the pa2 branch of the xv6-riscv-snu repository as follows:

• The pa2 branch has a user-level utility program named nenter and pmptest
which can be built from the user/nenter.c and the user/pmptest.c, 

respectively

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa2



23

▪ Due

• 11:59 PM, October 6 (Sunday)

▪ Submission

• Run make submit to generate a tarball

named xv6-pa2-{STUDENTID}.tar.gz in the xv6-riscv-snu directory

• Upload the compressed file to the submission server

• The total number of submissions for this project will be limited to 30

• Only the version marked FINAL will be considered for the project score

• In this project, you do not need to submit a report



Using GDB with QEMU



25

▪ Run sudo apt install gdb-multiarch

▪ In the xv6-riscv-snu directory, run make qemu-gdb to run QEMU

▪ In another shell, run gdb-multiarch ./kernel/kernel



26

▪ In GDB, enter target remote :<port>

▪ You can find TCP port in the QEMU log



27

▪ In the xv6-riscv-snu directory, run make qemu-gdb to run QEMU

▪ In another shell, run lldb ./kernel/kernel



28

▪ In LLDB, enter gdb-remote <port>

▪ You can find TCP port in the QEMU log



29

▪ The xv6 virtual machine has stopped at 0x1000

(the very beginning of the text section)

▪ To continue, enter c in GDB

(Running)



30

▪ To stop again, enter Ctrl-C in GDB

▪ Then the xv6 virtual machine stops immediately

(Stopped)



31

▪ Let’s set a breakpoint at exec()

▪ Enter b exec in GDB

(Stopped)



32

▪ Enter c in GDB to resume the xv6 machine

(Running)



33

▪ Run ls command in the xv6 machine

▪ Then the xv6 machine hits the breakpoint and stops right before 

starting exec() function

(Stopped)



34

▪ To learn GDB in detail, search for GDB on Google

▪ There are many useful videos about GDB in YouTube

▪ [JTJ의 리눅스탐험] GDB 활용하기

https://www.youtube.com/watch?v=qltDyFxiNzk


Thank you!


