
Memory Mapping

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024 



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Virtual Memory Area

▪ Virtual address space is a resource

• Every memory area should be allocated in the 

virtual address space

• If you run out of the virtual address space, you can 

not access any more memory

(even if you have space in the physical memory)

▪ Some of memory areas are backed by files 

and some aren’t

heap

stack

unused0

data

code

brk

stack
pointer



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Memory Mapping

▪ A dynamically allocated virtual memory area that has a backing store

• File

• Device memory

• Shared memory

• None

heap

stack

unused0

data

code

filemmap

offset

length



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

File vs. Anonymous Mapping

▪ File mapping (memory-mapped file)

• Backing store: regular file 

• Maps a memory region to a file region

• The content of the file can be read from or written to using load/store instructions

▪ Anonymous mapping

• Virtual address space not backed by a file

• Maps a memory region to a memory area filled with 0

• Zero-page mapping



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Shared vs. Private Mapping

▪ Several processes can map the same backing store in their own virtual 

address space

▪ Shared mapping

• Modifications to shared pages are 

visible to all involved processes

▪ Private mapping

• Modifications are not visible to 

other processes

• Copy-on-write

File 
mapping

Anonymous 
mapping

Private
Private 

file mapping
Private 

anonymous mapping

Shared
Shared 

file mapping
Shared 

anonymous mapping



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

mmap()

▪ Creates a new mapping in the virtual address space of the calling process

• addr:  the starting address for the new mapping (should be aligned to page boundary)

– If NULL, the kernel chooses the address

– Otherwise, the kernel takes it as a hint about where to place the mapping

• length:  the length of the mapping

• prot:  protection info. (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE)

• flags:  mapping flags (MAP_PRIVATE, MAP_SHARED, MAP_ANONYMOUS, …)

• fd, offset: file descriptor & file offset (used for file mapping)

void *mmap(void *addr, size_t length, int prot, int flags, 

int fd, off_t offset);



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Memory-Mapped File: Example

▪ Allows processes to perform file I/O using memory references

• Instead of open(), read(), write(), close(), etc.

• Map a file to a virtual memory region

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

#include <sys/mman.h>

int main(int argc, char *argv[]) {

int fd = open("/bin/ls", O_RDONLY);

char *p = (char *) mmap(0, 4096, PROT_READ, MAP_SHARED, fd, 0);

printf("%#04x %#04x %#04x %#04x\n", *p, *(p+1), *(p+2), *(p+3));

close(fd);

}



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Memory-Mapped File

▪ Implementation

• Initially, all pages in mapped region are marked as invalid

• OS reads a page from file whenever invalid page is accessed

• PTEs map virtual addresses to page frames holding file data

• <Virtual address base + n> refers to offset + n in file

▪ Writes to the memory-mapped area

• If MAP_SHARED,

OS writes to a page and it is written to the file when evicted from physical memory

• If MAP_PRIVATE,

OS creates a private copy and then write data to the page. (a.k.a. Copy-On-Write)

File is not modified.



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

File I/O Comparisons

int fd = open("a",...);

char *p = mmap(0,.., fd, 0);



mmap

char buf[1024];

int fd = open("a",...);

read(fd, buf, 1024);



memcpy

buf

char buf[1024];

FILE *fp = fopen("a","r");

fgets(buf, 1024, fp);



C library

memcpy

memcpy
buf

char buf[4096];

int fd = open("a",...,

O_DIRECT);

read(fd, buf, 4096);



buf



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Summary: Memory-Mapped File

▪ Pros

• Uniform access for files and memory (just use pointers)

• Less memory copying

• Several processes can map the same file allowing the pages in memory to be shared

▪ Cons

• Process has less control over data movement

• Does not generalize to streamed I/O (pipes, sockets, etc.)



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Shared Memory: Example

▪ Allows (unrelated) processes to share data using direct memory 

reference

#include <sys/mman.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

int fd = shm_open(“/shm1”, O_CREAT | O_EXCL | O_RDWR, 0600);

ftruncate(fd, 4096);      // set shmem size

int *p = (int *) mmap(0, 4096, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

for (int i = 0; i < 1024; i++)  p[i] = i; 

close(fd);

}



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Shared Memory

▪ Implementation

• Have PTEs in both tables map to the same physical frame

• Each PTE can have different protection values

• Must update both PTEs when a page becomes invalid

▪ Mapping shared memory in the virtual address space

• At the different address: flexible (no address space conflicts), but pointers inside the 

shared memory are invalid

• At the same address: less flexible, but shared pointers are valid



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Copy-on-Write

▪ Defers memory copies as long as possible, hoping to avoid them 

altogether

▪ Implementation

• Instead of copying pages, create shared mappings to the same page frames in 

physical memory

• Shared pages are protected as read-only

• When data is written to these pages, OS allocates new space in physical memory 

and directs the write to it

▪ Usage

• fork()

• Allocating data and heap pages, etc.



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Copy-on-Write during fork()

▪ COW ensures that both processes do 
not see each other’s changes

• Instead of copying all pages, create shared 
mappings of parent pages in the child address 
space

• Shared pages are protected as read-only

• Reads happen as usual

• Writes generate a protection fault and OS 
copies the page, changes page mapping, and 
restarts write instruction

▪ Efficient when the child process calls 
exec() immediately after fork()

Process

Page
table

Physical
memory

RO

RO

fork()

child process

copied

write



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Summary

code

data

heap 

stack

heap

code

data

heap

stack

data

/bin/ls

code

code
code

code

data

heap

heap

stack

File-backed, Read only (Shared)

File-backed (unmapped)

File-backed, Private, Read only

Anonymous, COW’d, R/W

Anonymous, R/W

File-backed, Read only (Shared)

File-backed, Read only

Anonymous, R/W

Anonymous, R/W

Process 1

Process 2

code

code

data

heap

stack

Physical memory

File system

Anonymous, R/W (unmapped)


	슬라이드 1: Memory Mapping
	슬라이드 2: Virtual Memory Area
	슬라이드 3: Memory Mapping
	슬라이드 4: File vs. Anonymous Mapping
	슬라이드 5: Shared vs. Private Mapping
	슬라이드 6: mmap()
	슬라이드 7: Memory-Mapped File: Example
	슬라이드 8: Memory-Mapped File
	슬라이드 9: File I/O Comparisons
	슬라이드 10: Summary: Memory-Mapped File
	슬라이드 11: Shared Memory: Example
	슬라이드 12: Shared Memory
	슬라이드 13: Copy-on-Write
	슬라이드 14: Copy-on-Write during fork()
	슬라이드 15: Summary

