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Address Translation Steps
▪ For each memory reference, 

• Extract VPN from VA

• Calculate the address of PTE 

• Read the PTE from memory

• Extract PFN from PTE

• Build PA 

• Read contents of PA from memory into register

▪ Which steps are expensive?

VPN OffsetVA

satp

PFN OffsetPA

PFN

Memory
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The Problem

▪ Address translation is too slow

• A simple linear page table doubles the cost of memory lookups

– One for the page table, another to fetch the data

• Multi-level page tables increase the cost further 

▪ Goal: make address translation fast

• Make fetching from a virtual address about as efficient as fetching from a physical 

address
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TLB

▪ Translation __________ Buffer

• A hardware cache of popular virtual-to-physical address translations

• Essential component which makes virtual memory possible

▪ TLB exploits locality

• Temporal locality:  an instruction or data item that has been recently accessed will 

likely be re-accessed soon

– Instructions and data accesses in loops, …

• _________ locality:  if a program accesses memory at address x, it will likely soon 

access memory near x

– Code execution, array traversal, stack accesses, …
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TLB Organization

▪ TLB is implemented in hardware

• Processes only use a handful of pages at a time

– 16~256 entries in TLB is typical

• Usually fully associative

– All entries looked up in parallel

– But may be set associative to reduce latency

• Replacement policy: LRU (Least Recently Used)

• TLB actually caches the whole PTEs, not just PFNs

Valid Tag (VPN) Value (PTE)

1 0x1000

1 0x2400

0 - -

V R M Prot PFN     0x1234

V R M Prot PFN     0x8800
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Address Translation with TLB
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Handling TLB Misses

▪ Software-managed TLB

• CPU traps into OS upon TLB miss

• OS finds right PTE and loads it into TLB

• CPU ISA has (privileged) instructions for TLB manipulation

• Page tables can be in any format convenient for OS (flexible)

▪ Hardware-managed TLB

• CPU knows where page tables are in memory
– e.g., CR3 (or PDBR) register in IA-32 / Intel 64,  satp in RISC-V

• OS maintains page tables

• CPU “walks” the page table and fills TLB

• Page tables have to be in hardware-defined format



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

TLB on Context Switches

▪ Flush TLB on each context switch

• TLB is flushed automatically when CR3 is changed in a hardware-managed TLB

• Some architectures support the pinning of pages into TLB

– For pages that are globally shared among processes (e.g., kernel pages)

– MIPS, Intel, etc.

▪ Track which entries are for which process

• Tag each TLB entry with an ASID (Address Space ID)

• A privileged register holds the ASID of the current process

• MIPS supports 8-bit ASID

– Why not use PID?

– What if there are more than 256 processes running?

• RISC-V supports up to 16-bit ASID for Sv39/Sv48 (stored in satp register)
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TLB on Multi-core

▪ TLB coherence

• Page-table changes may leave stale entries in the TLBs 

• Flushing the local TLB is not enough

• Unlike memory caches, TLBs of different cores are not maintained coherent by 

hardware

• TLB coherence should be restored by the OS

▪ TLB ____________

• The initiating core sends an IPI (Inter-Processor Interrupt) to the remote cores 

• The remote cores invalidate their TLBs (may need to flush the entire TLB)

• The IPI may take several hundreds of cycles
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TLB Performance

▪ TLB is the source of many performance problems

• Performance metric: hit rate, lookup latency, …

▪ Increase TLB ______ (= # TLB entries * Page size)

• Use superpages (or hugepages): e.g., 2MB, 1GB page support in Intel 64

• Increase the TLB size 

▪ Use multi-level TLBs

• e.g., Intel Haswell (4KB pages): L1 ITLB 128 entries (4-way), 

L1 DTLB 64-entries (4-way), L2 STLB 1024 entries (8-way)

▪ Change your algorithms and data structures to be TLB-friendly
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From CPU to Memory

▪ A process is executing on the CPU, and it issues a read to a virtual 

address

Memory

TLB
VA

PATLB hit

Page
tables

TLB miss
page fault

PTE

Data

CPU
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Load Example

▪ The common case

• The load instruction goes to the TLB in the MMU

• TLB does a lookup using the virtual page number of the address

• The page number matches, returning a PTE

• TLB checks the valid / protection bits in the PTE

• TLB validates that the PTE protection allows loads

• PTE specifies which physical frame holds the page

• MMU combines the physical frame and offset into a physical address

• MMU then reads from that physical address, returns value to CPU
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On TLB Miss

▪ Hardware-managed TLB

• MMU loads PTE from page table in memory

• OS has already set up the page tables so that the hardware can access it directly

• OS is not involved in this step

▪ Software-managed TLB

• Trap to the OS

• OS does lookup in page tables, loads PTE into TLB

• OS returns from exception

▪ At this point, there is a valid PTE for the address in the TLB

▪ TLB restarts translation
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On Page Faults

▪ PTE can indicate a page fault

• Read/Write/Execute – operation not permitted on page

• Invalid – virtual page not allocated or page not in physical memory

▪ TLB traps to the OS 

• Read/Write/Execute – OS usually will send fault back to the process, or might be 

playing tricks (e.g., copy on write, mapped files)

• Invalid (Not allocated) – OS sends fault to the process (e.g., segmentation fault)

• Invalid (Not in physical memory) – OS allocates a frame, reads from disk, and maps 

PTE to physical frame.
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Integrating VM and Cache (1)

▪ Physically indexed, physically tagged cache

• Allows multiple processes to have blocks in cache

• Allows multiple processes to share pages

• Address translation is on the critical path

Memory
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Integrating VM and Cache (2)

▪ Virtually indexed, virtually tagged cache

• _________ problem

– Each process has a different translation of the same virtual address

• Address _________ or aliases problem

– Two different virtual addresses point to the same physical address
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Integrating VM and Cache (3)

▪ Virtually indexed, physically tagged cache

• Use virtual address to access the TLB and cache in parallel

• TLB produces the PFN – which must match the physical tag of the accessed cache 

line for it to be a “hit”

Memory
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