
TLB

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Address Translation Steps
▪ For each memory reference,

• Extract VPN from VA

• Calculate the address of PTE

• Read the PTE from memory

• Extract PFN from PTE

• Build PA

• Read contents of PA from memory into register

▪ Which steps are expensive?

VPN OffsetVA

satp

PFN OffsetPA

PFN

Memory

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

The Problem

▪ Address translation is too slow

• A simple linear page table doubles the cost of memory lookups

– One for the page table, another to fetch the data

• Multi-level page tables increase the cost further

▪ Goal: make address translation fast

• Make fetching from a virtual address about as efficient as fetching from a physical

address

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

TLB

▪ Translation __________ Buffer

• A hardware cache of popular virtual-to-physical address translations

• Essential component which makes virtual memory possible

▪ TLB exploits locality

• Temporal locality: an instruction or data item that has been recently accessed will

likely be re-accessed soon

– Instructions and data accesses in loops, …

• _________ locality: if a program accesses memory at address x, it will likely soon

access memory near x

– Code execution, array traversal, stack accesses, …

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

TLB Organization

▪ TLB is implemented in hardware

• Processes only use a handful of pages at a time

– 16~256 entries in TLB is typical

• Usually fully associative

– All entries looked up in parallel

– But may be set associative to reduce latency

• Replacement policy: LRU (Least Recently Used)

• TLB actually caches the whole PTEs, not just PFNs

Valid Tag (VPN) Value (PTE)

1 0x1000

1 0x2400

0 - -

V R M Prot PFN 0x1234

V R M Prot PFN 0x8800

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Address Translation with TLB

CPU p d

f d

f

p

V

virtual
address

physical
address

page table

V VPN PTE

TLB

TLB hit

TLB miss

frame f

…

frame 1

frame 0

…

Physical memory

V

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Handling TLB Misses

▪ Software-managed TLB

• CPU traps into OS upon TLB miss

• OS finds right PTE and loads it into TLB

• CPU ISA has (privileged) instructions for TLB manipulation

• Page tables can be in any format convenient for OS (flexible)

▪ Hardware-managed TLB

• CPU knows where page tables are in memory
– e.g., CR3 (or PDBR) register in IA-32 / Intel 64, satp in RISC-V

• OS maintains page tables

• CPU “walks” the page table and fills TLB

• Page tables have to be in hardware-defined format

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

TLB on Context Switches

▪ Flush TLB on each context switch

• TLB is flushed automatically when CR3 is changed in a hardware-managed TLB

• Some architectures support the pinning of pages into TLB

– For pages that are globally shared among processes (e.g., kernel pages)

– MIPS, Intel, etc.

▪ Track which entries are for which process

• Tag each TLB entry with an ASID (Address Space ID)

• A privileged register holds the ASID of the current process

• MIPS supports 8-bit ASID

– Why not use PID?

– What if there are more than 256 processes running?

• RISC-V supports up to 16-bit ASID for Sv39/Sv48 (stored in satp register)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

TLB on Multi-core

▪ TLB coherence

• Page-table changes may leave stale entries in the TLBs

• Flushing the local TLB is not enough

• Unlike memory caches, TLBs of different cores are not maintained coherent by

hardware

• TLB coherence should be restored by the OS

▪ TLB ____________

• The initiating core sends an IPI (Inter-Processor Interrupt) to the remote cores

• The remote cores invalidate their TLBs (may need to flush the entire TLB)

• The IPI may take several hundreds of cycles

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

TLB Performance

▪ TLB is the source of many performance problems

• Performance metric: hit rate, lookup latency, …

▪ Increase TLB ______ (= # TLB entries * Page size)

• Use superpages (or hugepages): e.g., 2MB, 1GB page support in Intel 64

• Increase the TLB size

▪ Use multi-level TLBs

• e.g., Intel Haswell (4KB pages): L1 ITLB 128 entries (4-way),

L1 DTLB 64-entries (4-way), L2 STLB 1024 entries (8-way)

▪ Change your algorithms and data structures to be TLB-friendly

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

From CPU to Memory

▪ A process is executing on the CPU, and it issues a read to a virtual

address

Memory

TLB
VA

PATLB hit

Page
tables

TLB miss
page fault

PTE

Data

CPU

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Load Example

▪ The common case

• The load instruction goes to the TLB in the MMU

• TLB does a lookup using the virtual page number of the address

• The page number matches, returning a PTE

• TLB checks the valid / protection bits in the PTE

• TLB validates that the PTE protection allows loads

• PTE specifies which physical frame holds the page

• MMU combines the physical frame and offset into a physical address

• MMU then reads from that physical address, returns value to CPU

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

On TLB Miss

▪ Hardware-managed TLB

• MMU loads PTE from page table in memory

• OS has already set up the page tables so that the hardware can access it directly

• OS is not involved in this step

▪ Software-managed TLB

• Trap to the OS

• OS does lookup in page tables, loads PTE into TLB

• OS returns from exception

▪ At this point, there is a valid PTE for the address in the TLB

▪ TLB restarts translation

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

On Page Faults

▪ PTE can indicate a page fault

• Read/Write/Execute – operation not permitted on page

• Invalid – virtual page not allocated or page not in physical memory

▪ TLB traps to the OS

• Read/Write/Execute – OS usually will send fault back to the process, or might be

playing tricks (e.g., copy on write, mapped files)

• Invalid (Not allocated) – OS sends fault to the process (e.g., segmentation fault)

• Invalid (Not in physical memory) – OS allocates a frame, reads from disk, and maps

PTE to physical frame.

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Integrating VM and Cache (1)

▪ Physically indexed, physically tagged cache

• Allows multiple processes to have blocks in cache

• Allows multiple processes to share pages

• Address translation is on the critical path

Memory

TLB

Page
tables

VA
PATLB hit

TLB miss

PTE
Data

Cache
PA

Data

Cache
hit

Cache
miss

page fault

CPU

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Integrating VM and Cache (2)

▪ Virtually indexed, virtually tagged cache

• _________ problem

– Each process has a different translation of the same virtual address

• Address _________ or aliases problem

– Two different virtual addresses point to the same physical address

Memory

TLB

Page
tables

VA VA
TLB hit

TLB miss

PTE
Data

Cache

PA

Data

Cache
hit

Cache
miss

CPU

page fault

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Integrating VM and Cache (3)

▪ Virtually indexed, physically tagged cache

• Use virtual address to access the TLB and cache in parallel

• TLB produces the PFN – which must match the physical tag of the accessed cache

line for it to be a “hit”

Memory

CachePage
tables

VA

TLB
hit

TLB
miss

PTE

Data

TLB
PA

Data

Cache
miss

VPN offset

=?

PFN

Cache
hit

PFN

page fault

CPU

VPN page offsetVA

PFN page offsetPA

tag offsetsetPA

	슬라이드 1: TLB
	슬라이드 2: Address Translation Steps
	슬라이드 3: The Problem
	슬라이드 4: TLB
	슬라이드 5: TLB Organization
	슬라이드 6: Address Translation with TLB
	슬라이드 7: Handling TLB Misses
	슬라이드 8: TLB on Context Switches
	슬라이드 9: TLB on Multi-core
	슬라이드 10: TLB Performance
	슬라이드 11: From CPU to Memory
	슬라이드 12: Load Example
	슬라이드 13: On TLB Miss
	슬라이드 14: On Page Faults
	슬라이드 15: Integrating VM and Cache (1)
	슬라이드 16: Integrating VM and Cache (2)
	슬라이드 17: Integrating VM and Cache (3)

