
Page Tables

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

The Problem

▪ Space overhead of page tables

• A 32-bit address space with 4KB pages (4 bytes/PTE):

220 * 4 = 4MB (per process)

• A 64-bit address space with 8KB pages (8 bytes/PTE):

251 * 8 = 254 = 16PB (per process)

▪ How can we reduce this overhead?

• Observation: many invalid PTEs

• Only need to map the portion of the address space actually being used which is a

tiny fraction of the entire address space

VPN Off.

Off.VPN

12-bit20-bit

13-bit51-bit

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

(Typical) Linear Page Table

code
data
heap
heap

stack

Virtual address space Physical memory

Huge
waste!

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Paging with Segmentation

▪ A segment represents a region of valid address space

• Segmentation:

– Divide virtual address space into segments

– Each segment can have variable length

• Paging:

– Divide each segment into fixed-sized pages

– Each segment has a page table

– Each segment tracks base (physical address) and limit of the page table for that segment

▪ Virtual address divided into three portions

Seg # Page number Page offset

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Paging with Segmentation: Example

▪ Multics address translation

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Summary: Paging with Segmentation

▪ Pros

• Can decrease the size of page tables

• Segments can grow without any reshuffling

• Can run process when some pages are swapped to disk

• Increases flexibility of sharing: share either single page or entire segment

▪ Cons

• Page tables potentially can be large

– e.g., large but sparsely used heaps will have a lot of waste

• External fragmentation due to page tables

– Each page table should be allocated contiguously

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Linear vs. Multi-level Page Table

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Multi-level Page Table

▪ Allow each page table to be allocated non-contiguously

▪ Virtual addresses have 3 parts

• Outer page table: outer page number → secondary page table

• Secondary page table: secondary page # → page frame #

Outer page # Secondary page # Page offset

p1 p2

p2

secondary page table

p1

outer page table

d

page frame

d

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Multi-level Page Table: IA-32

▪ 32-bit paging

• 32-bit address space, 4KB pages, 4 bytes/PTE

• Want every page table to fit into a page

Directory Table Page offset

1210 10

PDE

PTE

Page frame Page offset

Page frame N

….

Page frame 6

Page frame 5

Page frame 4

Page frame 3

Page frame 2

Page frame 1

Page frame 0
Page directory

Page table

Physical memory

Physical address
CR3

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Multi-level Page Table: Intel 64

▪ Address translation in Intel 64 architecture

• 48-bit “linear” address → 52-bit physical address (4KB page)

Page Map

Level 4

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Intel VM Architecture (IA-32)

(optional)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Multi-level Page Table: RISC-V

▪ Sv32 (used for RV32)

• 32-bit virtual address → 34-bit physical address

▪ Sv39 (used in xv6)

• 39-bit virtual address → 56-bit physical address

▪ Sv48

• 48-bit virtual address → 56-bit physical address

satp register holds the
physical page number (PPN)
of the root page table

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Summary: Multi-level Page Table

▪ Pros

• Compact while supporting sparse address space

– Page-table space in proportion to the amount of address space used

• Easier to manage physical memory

– Each page table usually fits within a page

• Easier for hardware to walk through page tables

• No external fragmentation

▪ Cons

• More memory accesses on a TLB miss

• More complex than a simple linear page-table lookup

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Inverted Page Table

frame fCPU pid d f d

p

f

pid

…

frame 1

frame 0

…

Physical memory

virtual
address

physical
address

inverted page table

p

search

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Summary: Inverted Page Table

▪ Reverse mapping from PFN → <VPN, PID>

• One entry for each page frame in physical memory

• Entry consists of the virtual page number with information about the process that

owns that page

• Need to search through the table to find match

• Use hashing to limit the search to one, or at most a few, page-table entries

▪ Pros & Cons

• Decrease memory needed to store page tables:

No need to have per-process page tables

• Increase time needed to search the table on a TLB miss

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Paging Page Tables

▪ Store page tables in _______ address space

• Cold (unused) page table pages can be paged out to disk

• But, now addressing page tables requires translation

• Outer page table is usually pinned into physical memory

• Outer page table points to the ________ addresses (in the kernel address space)

of secondary page tables

• Need to handle nested page faults

▪ What if we page kernel code and data too?

	슬라이드 1: Page Tables
	슬라이드 2: The Problem
	슬라이드 3: (Typical) Linear Page Table
	슬라이드 4: Paging with Segmentation
	슬라이드 5: Paging with Segmentation: Example
	슬라이드 6: Summary: Paging with Segmentation
	슬라이드 7: Linear vs. Multi-level Page Table
	슬라이드 8: Multi-level Page Table
	슬라이드 9: Multi-level Page Table: IA-32
	슬라이드 10: Multi-level Page Table: Intel 64
	슬라이드 11: Intel VM Architecture (IA-32)
	슬라이드 12: Multi-level Page Table: RISC-V
	슬라이드 13: Summary: Multi-level Page Table
	슬라이드 14: Inverted Page Table
	슬라이드 15: Summary: Inverted Page Table
	슬라이드 16: Paging Page Tables

