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CPU Scheduling

▪ A policy deciding which process to run next, given a set of runnable 

processes

• Happens frequently, hence should be fast

▪ Policy

• Who's next?

• How long?

▪ Mechanism

• How to transition?

RunningReady

Scheduled

Time slice exhausted

I/O or 
event wait

Blocked

I/O or event 
completion
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Basic Approaches

▪ ___________ scheduling

• The scheduler waits for the running process to voluntarily yield the CPU

• Processes should be cooperative

▪ Preemptive scheduling

• The scheduler can interrupt a process and force a context switch

• What happens

– If a process is preempted in the midst of updating the shared data?

– If a process in a system call is preempted?
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Terminologies

▪ Workload

• A set of job descriptions

• e.g., arrival time, run time, etc.

▪ Scheduler

• A logic that decides when jobs run

▪ Metric

• Measurement of scheduling quality

• e.g., turnaround time, response time, fairness, etc.
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Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. Once started, each job runs to completion

4. All jobs only use the CPU (no I/O)

5. The run time of each job is known

▪ Metric:  Turnaround time

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

FIFO

▪ First-Come, First-Served

• Jobs are scheduled in order that they arrive

• “Real-world” scheduling of people in lines

– e.g., supermarket, bank tellers, McDonalds, etc.

• Non-preemptive

• Jobs are treated equally: no starvation

▪ Problems

• ________ effect:

Average turnaround time can be large 

if small jobs wait behind long ones
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SJF

▪ Shortest Job First

• Each job has a variable run time (Assumption 1 relaxed)

• Choose the job with the smallest run time

• Can prove that SJF shows the optimal turnaround time under our assumptions

• Non-preemptive

▪ Problems

• Not optimal when jobs arrive at any time

• Can potentially starve

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. The run time of each job is known
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FIFO vs. SJF

▪ FIFO

▪ SJF

A B C

0 20 40 60 80 100 120

A(10), B(10), C(10)

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = (𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎)/𝟑 = 𝟐𝟎

A B C

0 20 40 60 80 100 120

A(100), B(10), C(10)

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = (𝟏𝟎𝟎 + 𝟏𝟏𝟎 + 𝟏𝟐𝟎)/𝟑 = 𝟏𝟏𝟎

AB C

0 20 40 60 80 100 120

A(100), B(10), C(10)

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = (𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎)/𝟑 = 𝟓𝟎

A B C

0 20 40 60 80 100 120

A(100)

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = (𝟏𝟎𝟎 + 𝟗𝟎 + 𝟏𝟎𝟎)/𝟑 = 𝟗𝟔. 𝟕

B(10), C(10)
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STCF

▪ Shortest Time-to-Completion First 

• Jobs are not available simultaneously (Assumption 2 relaxed)

• Preemptive version of SJF (Assumption 3 relaxed)

• If a new job arrives with the run time less than the remaining time of the current 

job, preempt it

SJF

A B C

0 20 40 60 80 100 120

A(100)

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = (𝟏𝟎𝟎 + 𝟗𝟎 + 𝟏𝟎𝟎)/𝟑 = 𝟗𝟔. 𝟕

B(10), C(10)

STCF

A B C

0 20 40 60 80 100 120

A(100)

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = (𝟏𝟐𝟎 + 𝟏𝟎 + 𝟐𝟎)/𝟑 = 𝟓𝟎

B(10), C(10)

A

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. The run time of each job is known
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RR

▪ Round Robin

• Run queue is treated as a circular FIFO queue

• Each job is given a time slice (or scheduling quantum)

– Multiple of the timer-interrupt period or the timer _______

– Too short → higher context switch overhead

– Too long → less responsive

– Usually, 10 ~ 100ms

• Runs a job for a time slice and then switches to the next job in the run queue

• Preemptive

• No starvation

• Improved response time: great for time-sharing
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SJF vs. RR

▪ RR focuses on a new metric: “response time”

• Typically, RR has higher turnaround time than SJF, but better response time

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SJF

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = (𝟑𝟎 + 𝟔𝟎 + 𝟗𝟎)/𝟑 = 𝟔𝟎

A B C

0 20 40 60 80 100 120

A(30), B(30), C(30)

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = (𝟎 + 𝟑𝟎 + 𝟔𝟎)/𝟑 = 𝟑𝟎

RR

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = (𝟕𝟎 + 𝟖𝟎 + 𝟗𝟎)/𝟑 = 𝟖𝟎

A B C

0 20 40 60 80 100 120

A(30), B(30), C(30)

A B C A B C

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = (𝟎 + 𝟏𝟎 + 𝟐𝟎)/𝟑 = 𝟏𝟎
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(Static) Priority Scheduling

▪ Each job has a (static) priority

• cf.) nice(), renice(), setpriority(), getpriority()

▪ Choose the job with the highest priority to run next

▪ Round-robin or FIFO within the same priority

▪ Can be either preemptive or non-preemptive

▪ Starvation problem

• If there is an endless supply of high priority jobs, no low priority job will ever run
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Incorporating I/O

▪ I/O-aware scheduling

• Assumption 4 relaxed

• Overlap computation with I/O

• Treat each CPU burst as an independent job

▪ Example:  A (interactive) + B (CPU-intensive) 

I/O-aware STCF

0 20 40 60 80 100 120

A A A

A A A AB B B B

STCF

0 20 40 60 80 100 120

A A A

A A A A B B B BCPU

Disk

CPU burst I/O burst

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. The run time of each job is known
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Towards a General CPU Scheduler

▪ Goals

• Optimize turnaround time

• Minimize response time for interactive jobs

▪ Challenge: No a priori knowledge on the workloads

• The run time of each job is known (Assumption 5)

▪ How can the scheduler learn the characteristics of the jobs and make 

better decisions?

• Learn from the past to predict the future

(as in branch predictors or cache algorithms)

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. The run time of each job is known
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MLFQ

▪ Multi-Level Feedback Queue

• A number of distinct queues for each priority level

• Priority scheduling between queues, round-robin in the same queue

• Priority is varied based on

its observed behavior

Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t). 

Rule 2: If Priority(A) = Priority(B), A & B run in RR. 
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Changing Priority

▪ Typical workload: a mix of

• Interactive jobs: short-running, require fast response time

• CPU-intensive jobs: need a lot of CPU time, don’t care about response time

▪ Attempt #1: Dynamic Priority Change

Rule 3: When a job enters the system, it is placed at the

highest priority (the topmost queue).

Rule 4a: If a job uses up an entire time slice while running, 

its priority is reduced (i.e., moves down one queue).

Rule 4b: If a job gives up the CPU before the time slice is up,

it stays at the same priority level.
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Scheduling Under Rules 1-4

▪ Workload

• A: long-running job, B: short-running job, C: interactive job

A B C

A

A

A

0 20 40 60 80 100 120 140 160 180 200 220

Q0

Q1

Q2

A A A A

B

B

A A A A A A A A AA

B terminated
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Priority Boost

▪ Problems in Attempt #1

• Long-running jobs can starve due to too many interactive jobs

• A malicious user can game the scheduler by relinquishing the CPU just before the 

time slice is expired

• A program may change its behavior over time

▪ Attempt #2: Priority Boost

Rule 5: After some time period S, move all the jobs in the

system to the topmost queue.
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Scheduling Under Rules 1-5

A

A

A

0 20 40 60 80 100 120 140 160 180 200 220

Q0

Q1

Q2

A A A A A A A

A

A

A

A A

A

A

A A A

A A

B
o

o
st

B
o

o
st

B
o

o
st

Without
Priority
Boost

0 20 40 60 80 100 120 140 160 180 200 220

Q0

Q1

Q2

With
Priority
Boost

… starvation …
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Better Accounting

▪ Attempt #3: Revise Rule 4a/4b for better accounting

Rule 4: Once a job uses up its time allotment at a given level (regardless 

of how many times it has given up the CPU), its priority is reduced.

Q0

Q1

Q2

0 20 40 60 80 100

B B B B B B B B B

Without precise accounting

0 20 40 60 80 100

B

B

A A B A B A BB

With precise accounting
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Summary: Unix Scheduler

▪ MLFQ

• Preemptive priority scheduling

• Time-shared based on time slice

• Processes dynamically change priority

• 3~4 classes spanning ~170 priority levels (Solaris 2)

▪ Favor interactive processes over CPU-bound processes

▪ Use ______:  no starvation

• Increase priority as a function of wait time

• Decrease priority as a function of CPU time

▪ Many ugly heuristics for voo-doo constants



Linux CFS

(Completely Fair Scheduler)
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Linux Scheduler Evolution

Kernel version CPU Scheduler

Linux 2.4
• Epoch-based priority scheduling
• O(n) scheduler

Linux 2.6 ~ 
2.6.22

• Active / expired arrays with bitmaps
• Per-core run queue
• O(1) scheduler

Linux 2.6.23 ~ • CFS (Completely Fair Scheduler) by Ingo Molnar

Linux 3.14 ~
• Sporadic task model deadline scheduling 

(SCHED_DEADLINE)
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Linux Scheduling Classes

Class Description Policy

DL
• For real-time tasks with deadline
• Highest priority

SCHED_DEADLINE

RT • For real-time tasks
SCHED_FIFO
SCHED_RR

Fair • For time-sharing tasks
SCHED_NORMAL
SCHED_BATCH

Idle • For per-CPU idle tasks SCHED_IDLE
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Linux Task Priority

▪ Total 140 levels (0 ~ 139)

• A smaller value means higher priority

▪ Setting priority for non-real-time tasks

• nice(), setpriority()

• -20 ≤ nice value ≤ 19 

• Default nice value = 0 (priority value 120)

▪ Setting priority for real-time tasks

• sched_setattr()

• Static priority for SCHED_FIFO & SCHED_RR 

• Runtime, deadline, period for SCHED_DEADLINE

139 (nice 19)

100 (nice -20)
99

0

Non-real-time
task priority

(SCHED_NORMAL,
SCHED_BATCH)

Real-time
task priority

(SCHED_FIFO,
SCHED_RR)

Real-time task
with deadline high

low
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Proportional Share Scheduling

▪ Basic concept

• A weight value is associated with each task

• The CPU is allocated to task in proportion to its weight

Time

Task A (weight 2)

Task B (weight 1)

Task C (weight 4)

Task D (weight 1)

Task A’s share = 
𝒘𝒆𝒊𝒈𝒉𝒕𝑨
σ𝒘𝒆𝒊𝒈𝒉𝒕𝒊

=
𝟐

𝟖
= 𝟐𝟓. 𝟎%
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Nice to Weight

▪ How to map nice values to weights?

• Wants a task to get ~10% less CPU time when it goes from nice i to nice i+1

• This will make another task remained on nice i have ~10% more CPU time

• weight(i)/weight(i+1) = 0.55/0.45 = 1.22 (or ≃ 25% increase)

▪ Examples

• T1 (nice 0), T2 (nice 1)

– T1: 1024/(1024+820) = 55.5%

– T2: 820/(1024+820) = 44.5%

• + T3 (nice 1)

– T1: 1024/(1024+820*2) = 38.4%

– T2: 820/(1024+820*2) = 30.8%

– T3: 820/(1024+820*2) = 30.8%

const int sched_prio_to_weight[40] = {
/* -20 */     88761,     71755,     56483,     46273,     36291,
/* -15 */     29154,     23254,     18705,     14949,     11916,
/* -10 */      9548,      7620,      6100,      4904,      3906,
/*  -5 */      3121,      2501,      1991,      1586,      1277,
/*   0 */      1024,       820,       655,       526,       423,
/*   5 */       335,       272,       215,       172,       137,
/*  10 */       110,        87,        70,        56,        45,
/*  15 */        36,        29,        23,        18,        15,
};
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Virtual Runtime

▪ Approximate the “ideal multitasking” that CFS is modeling

▪ Normalize the actual runtime to the case with nice value 0

• Weight0: the weight of nice value 0

• Weight(T): the weight of the task T

• PR(T): the actual runtime of the task T

• VR(T): the virtual runtime (vruntime) of the task T

▪ For a high-priority task, its vruntime increases slowly

𝑽𝑹 𝑻 =
𝑾𝒆𝒊𝒈𝒉𝒕𝟎
𝑾𝒆𝒊𝒈𝒉𝒕(𝑻)

× 𝑷𝑹 𝑻 = 𝑾𝒆𝒊𝒈𝒉𝒕𝟎 ×
𝟐𝟑𝟐

𝑾𝒆𝒊𝒈𝒉𝒕(𝑻)
× 𝑷𝑹(𝑻) ≫ 𝟑𝟐

precomputed:
sched_prio_to_wmult[]
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Runqueue

▪ CFS maintains a red-black tree where 

all runnable tasks are sorted by vruntime

• Self-balancing binary search tree

• The path from the root to the farthest leaf is

no more than twice as long as the path to the 

nearest leaf

• Tree operations in O(log N) time

• The leftmost node indicates the smallest vruntime

▪ Choose the task with the smallest virtual runtime (vruntime)

• Small virtual runtime means that the task has received less CPU time than what it 

should have received

rb_leftmost
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Challenges

▪ Fairness between groups of threads

• Session groups, cgroups

▪ Load balancing among CPU cores

Source: J.-P. Lozi et al., The Linux Scheduler: a Decade of Wasted Cores, EuroSys, 2016.
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