Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

CPU Scheduling

CPU Scheduling

= A policy deciding which process to run next, given a set of runnable
processes
* Happens frequently, hence should be fast

Scheduled

. —

Time slice exhaustec
 Who's next!? ime sfice exhau

?
* How Iong. I/0 or even\ /I/O or
completion event wait

= Mechanism Blocked

e How to transition!?

Basic Approaches

. scheduling

* The scheduler waits for the running process to voluntarily yield the CPU

* Processes should be cooperative

* Preemptive scheduling
* The scheduler can interrupt a process and force a context switch
* What happens

— If a process is preempted in the midst of updating the shared data!?
— If a process in a system call is preempted?

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Terminologies

= Workload

* A set of job descriptions

* e.g.,arrival time, run time, etc.

= Scheduler

* A logic that decides when jobs run

" Metric
* Measurement of scheduling quality

* e.g., turnaround time, response time, fairness, etc.

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Workload Assumptions

Each job runs for the same amount of time

All jobs arrive at the same time

All jobs only use the CPU (no I/O)

.
2.
3. Once started, each job runs to completion
4.
5. The run time of each job is known

= Metric: Turnaround time

Tturnaround — Tcompletion R Tarrival

FIFO

" First-Come, First-Served
* Jobs are scheduled in order that they arrive

* “Real-world” scheduling of people in lines
— e.g., supermarket, bank tellers, McDonalds, etc.

* Non-preemptive

* Jobs are treated equally: no starvation

= Problems

. effect:
Average turnaround time can be large
if small jobs wait behind long ones

B - ==

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

2. Alljobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no 1/0)

| Shortest JOb FirSt 5. The run time of each job is known

* Each job has a variable run time (Assumption | relaxed)

SJF T

* Choose the job with the smallest run time
* Can prove that SJF shows the optimal turnaround time under our assumptions

* Non-preemptive

* Problems
* Not optimal when jobs arrive at any time

* Can potentially starve

FIFO vs. SJF

* FIFO

A(10), B(10), C(10)

I I I | |
0 20 40 60 80 100 120

T turnarouna = (10 + 20 + 30)/3 =20
= SJF

A(100), B(10), C(10)

0 20 40 60 80 100 120

T surnarouna = (10 +20 + 120)/3 = 50

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

A(100), B(10), C(10)

20 40 60 80 100 120

o

T rurnaround = (100 + 110 + 120)/3 = 110

A(100) B(10), C(10)

20 40 60 80 100 120

o

T ournaround = (100 + 90 + 100)/3 = 96.7

STCF e
4: All jobs only lee the CPU (no 1/0)

= Shortest Time-to-Completion First 5. The run time of each job is known
* Jobs are not available simultaneously (Assumption 2 relaxed)
* Preemptive version of SJF (Assumption 3 relaxed)

* If a new job arrives with the run time less than the remaining time of the current
job, preempt it

A(100) B(10), C(10) A(100) B(10), C(10)

ABI A

0 20 40 60 80 100 120 0 20 40 60 80

100 120

T turnarouna = (100 +90 + 100)/3 = 96.7 T turnarounda = (120 +10 + 20)/3 = 50

SIF STCF

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

RR

= Round Robin

* Run queue is treated as a circular FIFO queue

Each job is given a time slice (or scheduling quantum)
— Multiple of the timer-interrupt period or the timer
— Too short = higher context switch overhead

— Too long => less responsive
— Usually, 10 ~ 100ms

Runs a job for a time slice and then switches to the next job in the run queue

Preemptive

No starvation

Improved response time: great for time-sharing

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

10

SJF vs. RR

* RR focuses on a new metric:“response time”

Tresponse — Tfirstrun _ Tarrival

* Typically, RR has higher turnaround time than SJF but better response time

A(30), B(30), C(30) A(30), B(30), C(30)

ABIAB A B
0

0 20 40 60 80 100 120 0 2 40 60 80 100 120
T turnarouna = (30 + 60 +90)/3 = 60 T turnarouna = (70 + 80 +90)/3 = 80
Tresponse =(0+30+60)/3 =30 Tresponse =(0+10+20)/3=10

SJF RR

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

11

(Static) Priority Scheduling

" Each job has a (static) priority
* cf.) nice(),renice(),setpriority(),getpriority()

* Choose the job with the highest priority to run next
* Round-robin or FIFO within the same priority

" Can be either preemptive or non-preemptive

= Starvation problem
* If there is an endless supply of high priority jobs, no low priority job will ever run

. I—Efochiobrinsforthe same ameonntcftine
4—Alljobs-only-use- the CRU{no-1/0)
m |/O-aware SCheCIUIIng 5. The run time of each job is known

* Assumption 4 relaxed
* Overlap computation with I/O
* Treat each CPU burst as an independent job

= Example: A (interactive) + B (CPU-intensive)

CPU burst /O burst

—

ABBBB A BABABASB
I I I I I I I I
0 20 40 60 80 0 20 40 60 80

100 120 100 120
STCF I/O-aware STCF

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Towards a General CPU Scheduler

" Goals i—tachjob tunsforthe same amount of ime
* Optimize turnaround time S—Oneestarted,eachjobruns-to-completion
4—Alljobs only-use the CRU-{po-1/0)
* Minimize response time for interactive jobs S—Fhe-run-time-of eachjob-is-known

* Challenge: No a priori knowledge on the workloads

T o of cachiobic] ’ on 5

* How can the scheduler learn the characteristics of the jobs and make
better decisions!?

* Learn from the past to predict the future
(as in branch predictors or cache algorithms)

14

MLFQ

= Multi-Level Feedback Queue

* A number of distinct queues for each priority level

* Priority scheduling between queues, round-robin in the same queue

Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

Rule 2: If Priority(A) = Priority(B), A & B run in RR.

* Priority is varied based on
its observed behavior

Queue
headers

Runable processes

A

Priority 4

Priority 3

Priority 2

Priority 1

15

Changing Priority

= Typical workload: a mix of
* Interactive jobs: short-running, require fast response time

* CPU-intensive jobs: need a lot of CPU time, don’t care about response time

* Attempt #|: Dynamic Priority Change

Rule 3: When a job enters the system, it is placed at the
highest priority (the topmost queue).

Rule 4a: If a job uses up an entire time slice while running,
its priority is reduced (i.e., moves down one queue).

Rule 4b: If a job gives up the CPU before the time slice is up,
it stays at the same priority level.

16

Scheduling Under Rules |-4

= Workload

* A:long-running job, B: short-running job, C: interactive job

0 20 40 60 80 100 120 140 160 180

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

200

220

17

Priority Boost

* Problems in Attempt #l|
* Long-running jobs can starve due to too many interactive jobs
* A malicious user can game the scheduler by relinquishing the CPU just before the
time slice is expired
* A program may change its behavior over time

= Attempt #2: Priority Boost

Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

18

Scheduling Under Rules 1-5

Without
Priority
Boost

| | | | | |
0 20 40 60 80 100 120 140 160 180 200 220

With
Priority
Boost

0 20 40 60 80 100 120 140 160 180 200 220

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Better Accounting

= Attempt #3: Revise Rule 4a/4b for better accounting

Rule 4: Once a job uses up its time allotment at a given level (regardless
of how many times it has given up the CPU), its priority is reduced.

Q2

Ql

- WL 311

0 20 40 60 80 100 0 20 40 60 80 100

Without precise accounting With precise accounting

20

Summary: Unix Scheduler

= MLFQ

* Preemptive priority scheduling

* Time-shared based on time slice

* Processes dynamically change priority

* 3~4 classes spanning ~|70 priority levels (Solaris 2)

* Favor interactive processes over CPU-bound processes

= Use : no starvation

* Increase priority as a function of wait time
* Decrease priority as a function of CPU time

= Many ugly heuristics for voo-doo constants

21

Linux CFS
(Completely Fair Scheduler)

CPU Scheduler

: * Epoch-based priority scheduling
* 0(n) scheduler

Linux 2.6 ~ : ﬁ;::nézr/eerxupr:rgl(jleaur;ays with bitmaps
2.6.22 * O(1) scheduler

IR WERM ° CFS (Completely Fair Scheduler) by Ingo Molnar
: M © Sporadic task model deadline scheduling
Linux 3.14 (SCHED DEADLINE)

DL . Fgr real-tlr.ne.tasks with deadline SCHED DEADLINE
* Highest priority

SCHED_FIFO
SCHED RR

SCHED_NORMAL
SCHED_BATCH

 For real-time tasks

Fair * For time-sharing tasks

* For per-CPU idle tasks SCHED_IDLE

Linux Task Priority

139 (nice 19)

= Total 140 levels (0 ~ 139) Non-real-time jow
task priority
* A smaller value means higher priority (SCHED_NORMAL,

SCHED_BATCH) | 100 (nice -20)
99

= Setting priority for non-real-time tasks
* nice(),setpriority()

e .20 < nice value = 19

i o Real-time

* Default nice value = 0 (priority value 120) task priority
(SCHED_FIFO,

= Setting priority for real-time tasks SCHED_RR)

 sched setattr()
e Static priority for SCHED FIFO & SCHED_RR

* Runtime, deadline, period for SCHED_DEADLINE Real-time task |
with deadline | high

25

Proportional Share Scheduling

= Basic concept
* A weight value is associated with each task
* The CPU is allocated to task in proportion to its weight

. ot o =
i Task B (weight 1)

Task C (weight 4)

. Task D (weight 1)

weight 2 i
T4 2 25.0% Time
Y. weight; 8

Task A’s share =

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

Nice to Weight

* How to map nice values to weights?

* Wants a task to get ~10% less CPU time when it goes from nice 1 to nice 1+1

e This will make another task remained on nice 1 have ~10% more CPU time

 weight(1)/weight(1+1) = 0.55/0.45 = 1.22 (or = 25% increase)

= Examples

* T, (nice 0), T, (nice 1)
— T,:1024/(1024+820) = 55.5%
— T,:820/(1024+820) = 44.5%

* +7T; (nice |)
— T,:1024/(1024+820%2) = 38.4%
— T,:820/(1024+820*2) = 30.8%
— T5:820/(1024+820*2) = 30.8%

const int sched_prio_to_weight[40] = {

/*
/*
/*
/*
/*
/*
/*
/*
}s

-20
-15
-10
-5
()

5
10
15

*/
*/
*/
*/
*/
*/
*/
*/

88761,
29154,
9548,
3121,
1024,
335,
110,
36,

71755,
23254,
7620,
2501,
820,
272,
87,
29,

56483,
18705,
6100,
1991,
655,
215,
70,
23,

46273,
14949,
4904,
1586,
526,
172,
56,
18,

36291,
11916,
3906,
1277,
423,
137,
45,
15,

27

Virtual Runtime

= Approximate the “ideal multitasking” that CFS is modeling

= Normalize the actual runtime to the case with nice value 0

VR(T) = Weighto x PR(T) = | Weight, x 2" x PR(T) | > 32
~ Weight(T) = \Wetghto Xy o oheeny < PR

\

Weight,: the weight of nice value O precomputed:
Weight(T): the weight of the task T >ched_prio_to_wmultl]
PR(T): the actual runtime of the task T

VR(T): the virtual runtime (vruntime) of the task T

" For a high-priority task, its vruntime increases slowly

28

Runqueue

" CFS maintains a red-black tree where
all runnable tasks are sorted by vruntime
* Self-balancing binary search tree

* The path from the root to the farthest leaf is
no more than twice as long as the path to the
nearest leaf

* Tree operations in O(log N) time
e The leftmost node indicates the smallest vruntime rb_leftmost

* Choose the task with the smallest virtual runtime (vruntime)

e Small virtual runtime means that the task has received less CPU time than what it
should have received

29

Challenges

* Fairness between groups of threads

* Session groups, cgroups

" Load balancing among CPU cores

Number of threads in run queue:

Ehsa _m-::h P 2

0

1

NUMA node #
7 6 5 4 3 2

Oms 17.5s

Source: J.-P. Lozi et al., The Linux Scheduler: a Decade of Wasted Cores, EuroSys, 2016.
4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

	슬라이드 1: CPU Scheduling
	슬라이드 2: CPU Scheduling
	슬라이드 3: Basic Approaches
	슬라이드 4: Terminologies
	슬라이드 5: Workload Assumptions
	슬라이드 6: FIFO
	슬라이드 7: SJF
	슬라이드 8: FIFO vs. SJF
	슬라이드 9: STCF
	슬라이드 10: RR
	슬라이드 11: SJF vs. RR
	슬라이드 12: (Static) Priority Scheduling
	슬라이드 13: Incorporating I/O
	슬라이드 14: Towards a General CPU Scheduler
	슬라이드 15: MLFQ
	슬라이드 16: Changing Priority
	슬라이드 17: Scheduling Under Rules 1-4
	슬라이드 18: Priority Boost
	슬라이드 19: Scheduling Under Rules 1-5
	슬라이드 20: Better Accounting
	슬라이드 21: Summary: Unix Scheduler
	슬라이드 22: Linux CFS (Completely Fair Scheduler)
	슬라이드 23: Linux Scheduler Evolution
	슬라이드 24: Linux Scheduling Classes
	슬라이드 25: Linux Task Priority
	슬라이드 26: Proportional Share Scheduling
	슬라이드 27: Nice to Weight
	슬라이드 28: Virtual Runtime
	슬라이드 29: Runqueue
	슬라이드 30: Challenges

