Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

Processes

OS Internals

shell
shell ps
User
trap

space
Kernel System Call Interface
space
Process
Management o
Memory scheduler §-
Management o
I/O Management |, IPC g.
(device drivers) synchronization =]

What is a Process?

= A(An) of a program in execution
= |ava analogy:

* Class = “program” (static)

* Object = “process” (dynamic)

* The basic unit of protection

= A process is identified using its process ID (PID)

= A process includes
* CPU context (registers)
* OS resources (address space, open files, etc.)

* Other information (PID, state, owner, etc.)

From Program to Process

Memory

PC— Code

Data

Heap

SP

Stack

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Disk

code

program

Running a Process

)

Fetch I € Mem|[P(]
Decode /

Execute /

Update PC

N

(FERR]
(@)
3"
C
(BRIl ND

Running Multiple Processes

Ty
Code A

g

Data A

CPU

Ty
Code B

g

Data B

CPU

ifnnnil
Code C

-

Data C

innnnn
(@)
©
C
InEEnn

Interleaving Multiple Processes

Code A
7

-
—_—
2

- -

Data A

TIY
Code B

/

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Virtualizing the CPU

Data B

OS Code

=

OS Data

OS creates an illusion
that each process has its
own CPU (and memory)

scheduler

Example: Creating a Process

#include <sys/types.h>
#include <unistd.h>

int main() {
int pid;

if ((pid = fork()) == 0)
printf (“Child of %d is %d\n”, getppid(), getpid()); /* child */
else
printf (“I am %d. My child is %d\n”, getpid(), pid); /* parent */
}

$./a.out
I am 31098. My child is 31099.

Child of 31098 is 31099.

$./a.out

Child of 31100 is 31101.

I am 31100. My child is 311e1.

Process Hierarchy

= Parent-child relationship
* One process can create another process
* Unix calls the hierarchy a “process group”

* Windows has no concept of process hierarchy

* Browsing a list of processes:
* ps in Unix
* Task Manager (taskmgr) in Windows

$ cat filel | wc

10

Process Creation

= fork()

* Creates a new process cloning the parent process
— Parent inherits most of resources and privileges: open files, UID, etc.
— Child also duplicates the parent’s address space

* Parent may either wait for the child to finish (using wait()), or it may continue in
parallel

* Shells or GUIs use this system call internally

e Called once, returned twice

= exec()
* Replaces the current process image with a new program
* Windows: CreateProcess() = fork() + exec()
* Called once, never returns

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

11

Process Termination

* Normal exit (voluntary)
* Error exit (voluntary)

= Fatal error (involuntary)
* Segmentation fault — illegal memory access
* Protection fault
* Exceed allocated resources, etc.

* Killed by another process (involuntary)

* By receiving a signal

. process: terminated, but not removed

12

Simplified Shell

int main(void)

{
char cmdline[MAXLINE];
char *argv[MAXARGS];
pid_t pid;
int status;

while (getcmd(cmdline, MAXLINE) >= 0) {
parsecmd(cmdline, argv);
if (!builtin_command(argv)) {
if ((pid = fork()) == 0) {
if (execv(argv[@], argv) < 0) {
printf(“%s: command not found\n”, argv[0]);
exit(9);
}

}
waitpid(pid, &status, 0);

13

Process State Transitions

Created\

Scheduled
Ready

/ exi

—
—

Time slice exhausted

/0 or event completio\

Blocked

/I/O or event wait

14

Processes

< 2o 22| at - O s
oer SH0) B2V
ZEHA M5 WIIE AEE2IOM ARSI ME EHE AHA
2 h 5% 19% 1% 0% 0%
5 olg e CcPU Hee Az HEQ3a GPU | G
::- 2 A elAt 0.6% 36.2MB OMB/s OMbps 0%
EI [# Initech Client Manager Service... 0.4% 24MB OMB/s OMbps 0%
.'.:: & TUCTLSystem.exe(32H1E) 0.4% 2.8MB OMB/s OMbps 0%
%‘ HE [System 0.3% 0.1MB 0.1MB/s OMbps 0%
EI i MH|£ ZAE: Windows Update 0.3% 15.0MB 0.1MB/s OMbps 0%
; 1 = dlA3E & 2elAt 0.3% 74.1MB OMB/s OMbps 0.1%
::' -4 [Mul~ Sl HEZR 38 Z2., 0.3% 6.1MB OMB/s 0Mbps 0%
EI i MH| 2 ZAE: Windows Mana.. 0.3% 9.0MB OMB/s OMbps 0%
]
::-' j 55 Antimalware Service Executable 0.2% 181.7MB 0.1MB/s OMbps 0%
::' i i@ Slack 02% 456MB OME/s OMbps 0%
E: J] Mag'\cLinMNXSeMces(SEHlE) 0.1% 74MB OMB/s OMbps 0%
:—:. | [®5 CrossEX Live Checker(32H|E) 0.1% 1.4MB OMB/s OMbps 0%
%‘ B wicrosoft Edge(23) 0] 01% 13114MB OMB/s OMbps 0%
E: S G Google Chrome(4) 0.1% 109.8MB OMB/s OMbps 0%
EI] b sl HIIE o T+ Windows EH47](2) 01% B844MB OMB/s OMbps 0%
7 0=00 st == ASDF Service Application 0.1% 49MB OMB/s OMbps 0%
E: Sols i1 = Z¢ WMI Provider Host 0.1% 304MB OMB/s OMbps 0%
;—r_ _h q #O0 _5|':| _5-| SO00 —cr W Dell Display Manager(32H| £) 0.1% 24MB OMB/s OMbps 0%
= Spooler SubSystem App 0.1% 5.8MB OMB/s OMbps 0%
MH| A ZAE: Network List Ser. 0.1% 2.8MB OMB/s OMbps 0%
Interezen Service Program(32.. 0.1% 1.5MB OMBy/s OMbps 0%
a6 WMI Provider Host 0.1% 2.7MB OMB/s OMbps 0% o
< >
ZHEFB|(D) It ZUII(E

15

Implementing Processes

* PCB (Process Control Block) or Process Descriptor

* Each PCB represents a process

* Contains all the information about a process

CPU registers

PID, PPID, process group, priority, process state, signals
CPU scheduling information

Memory management information

Accounting information

File management information

/O status information

Credentials

* struct task_struct in Linux: 6592 bytes as of Linux 6.2.0
* struct proc in xvé6: 360 bytes

4190.307: Oper.

ating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

Context Switch

* The act of switching CPU from one process to another

= Administrative overhead
* Saving and restoring registers and memory maps
* Flushing and reloading the memory cache

* Updating various tables and lists, etc.

* The overhead depends on hardware support
* Multiple register sets in UltraSPARC

* Advanced memory management techniques may require extra data to be switched
with each context (e.g., page tables, TLB, etc.)

= |00s or 1000s of switches/sec typically

17

Example: Context Switches in Linux

* Total uptime: 10,738,129.85 sec (124 days) /proc/uptime
* Total 6,770,575,007 context switches /proc/stat
= Average 630.5 context switches / sec (for all 4 cores)

" Roughly 158 context switches / sec / core

é?sys — [bt
[1~-2016] cat /proc/uptime
18738129.85 426064560.99
[1~-2017] grep ctxt /proc/stat
6778575087

[<v5:~-2018] echo "6770575007 / 10738129.85" | bc -1

6360.517147918452485467061
| :~-2019] echo "630.51714791845248546701 / 4" | bc -1

157.62928697961312136675
[cyve:~-2020]

18

Performing Context Switch in xvé

Process

@ Timer interrupt

Process A

Process B

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

RISC-V

® set sepc € pc, scause
Disable interrupt
Change to kernel mode
Jump to trap handler @ stvec

@ Move back to user mode
Enable interrupt
Set pc € sepc

Kernel

@ Save user regs to trapframe(A)
Change to kernel page table
Make A’s state RUNNABLE
Save A’s context to PCB(A)

Run scheduler()
Make B’s state RUNNING
Restore B’s context from PCB(B)

@ Change to user page table
Restore user regs from trapframe(B)
return-from-trap

Process State Queues

* The OS maintains a collection of queues that represent the state of all
processes in the system

* Ready queue (or run queue)

* Wiait queue(s): one queue for each type of event (device, timer, message, ...)

* Each PCB is queued onto a state queue according to its current state

* As a process changes state, its PCB is migrated between the various queues

20

Implementing fork()

int fork()

= Creates and initializes a new PCB
" Creates and initializes a new address space

= |nitializes the address space with a copy of the entire contents of the
address space of the parent

* |nitializes the kernel resources to point to the resources used by the
parent (e.g., open files)

* Places the PCB on the ready queue
= Returns the child’s PID to the parent, and zero to the child

Implementing exec ()

int execv(char *prog, char *argv[])

= Stops the current process
" | oads the program “prog” into the process’s address space
* |nitializes hardware context and “args” for the new program

" Places the PCB on the ready queue

» exec() does not create a new process

* What does it mean for exec() to return?

Policy vs. Mechanism

= Policy
* What should be done?
* Policy decisions must be made for all resource allocation and scheduling problems
* e.g., What is the next process to run?

= Mechanism
* How to do something!?
* The tool for implementing a set of policies

* e.g., How to make multiple processes run at once?

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

23

Separating Policy from Mechanism

A key principle in operating system design

Policies are likely to change depending on workloads and also across
places or over time

A general mechanism, separated from policy, is more desirable
Allows to build a more modular OS

Enables extensible systems — User-specific policies?

	슬라이드 1: Processes
	슬라이드 2: OS Internals
	슬라이드 3: What is a Process?
	슬라이드 4: From Program to Process
	슬라이드 5: Running a Process
	슬라이드 6: Running Multiple Processes
	슬라이드 7: Interleaving Multiple Processes
	슬라이드 8: Virtualizing the CPU
	슬라이드 9: Example: Creating a Process
	슬라이드 10: Process Hierarchy
	슬라이드 11: Process Creation
	슬라이드 12: Process Termination
	슬라이드 13: Simplified Shell
	슬라이드 14: Process State Transitions
	슬라이드 15: Processes
	슬라이드 16: Implementing Processes
	슬라이드 17: Context Switch
	슬라이드 18: Example: Context Switches in Linux
	슬라이드 19: Performing Context Switch in xv6
	슬라이드 20: Process State Queues
	슬라이드 21: Implementing fork()
	슬라이드 22: Implementing exec()
	슬라이드 23: Policy vs. Mechanism
	슬라이드 24: Separating Policy from Mechanism

