
Architectural Support

for OS

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Computer System Organization

OS

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Issue #1: I/O

▪ How to perform I/Os efficiently?

• I/O devices and CPU can execute concurrently

• Each device controller is in charge of a particular device type

• Each device has a local buffer

• CPU issues specific commands to I/O devices

• CPU moves data between main memory and local buffers

▪ CPU is a precious resource; it should be freed from time-consuming

tasks

• Checking whether the issued command has been completed or not

• Moving data between main memory and device buffers

CPU M

regs

buffer

controller

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Interrupts

▪ How does the kernel notice an I/O has finished?

• ___________

• Hardware interrupt

“I am done!”

“Do homework!”

“OK”

“Do homework!”

“OK”

“Done?”

“No”

“Done?”

“No”

“Done?”

“Yes”

registers

buffer

Interrupt
controller

CPU
Disk

controller

Disk drive

❶
❷

❸

❹

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Interrupt Handling

▪ Preserves the state of the CPU

• In a fixed location

• In a location indexed by the device ID

• On the system stack

▪ Determines the type

• Polling

• Vectored interrupt system

▪ Transfers control to the

interrupt service routine (ISR) or

interrupt handler

current instruction

next instruction

interrupt handler

❶

❷

❸

interrupt

Dispatch
to handler

Execute
the handler

❹
Return from
interrupt

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Data Transfer Modes

▪ _____________ (PIO)

• CPU is involved in moving data between I/O devices and memory

• By special I/O instructions vs. by memory-mapped I/O

• e.g., keyboard, mouse, …

▪ DMA (Direct Memory Access)

• Used for high-speed I/O devices to transmit information at close to memory

speeds

• Device controller transfers blocks of data from the local buffer directly to main

memory (or vice versa) without CPU intervention

• DMA controller oversees the overall data transfer

• Only an interrupt is generated per request

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Disk I/O Example

SATA controller

send read
command

❶
ack❸

perform disk read❹
queue command & ack❷

buffer data❺

notify❻

DMA setup❼

DMA❽

interrupt❾

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Issue #2: Protection

▪ How to prevent user applications from harming the system?

• What if an application accesses disk drives directly?

• What if an application executes the HLT instruction?

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Protected Instructions

▪ Protected or ________ instructions

• The ability to perform certain tasks that cannot be done from user mode

• Direct I/O access
– e.g., in / out instructions in x86

• Accessing system registers

– Control and status registers (CSRs)

– System table locations (e.g., interrupt handler table)

– Setting special “mode bits”, etc.

• Memory state management

– Page table updates, page table base address, TLB loads, etc.

• HLT instruction in x86

• …

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

CPU Modes of Operation

▪ Kernel mode vs. user mode

• How does the CPU know if a protected instruction can be executed?

• The architecture must support at least two modes of operation:

kernel and user mode

– 4 privilege levels in x86_64: Ring 0 > 1 > 2 > 3

– 4 privilege levels in ARM: EL3 > EL2 > EL1 > EL0

– 3 privilege levels in RISC-V: Machine > Supervisor > User

• Mode can be set by a status bit in a protected register

– IA-32: Current Privilege Level (CPL) in CS register

– ARM: Mode field in CPSR register

▪ Protected instructions can only be executed in the corresponding

privileged level

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Issue #3: Servicing Requests

▪ How to ask services to the OS?

• How can an application read a file if it cannot access disk drives?

• Even a “printf()” call requires hardware access

• User programs must ask the OS to do something privileged

Crossing
Protection
Boundaries

less privileged

more privileged

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

System Calls

▪ OS defines a set of system calls

• Programming interface to the services provided by OS

• OS protects the system by rejecting illegal requests

• OS may impose a quota on a certain resource

• OS may consider fairness while sharing a resource

▪ A system call is a ________ procedure call

• System call routines are in the OS code

• Executed in the kernel mode

• On entry, user mode → kernel mode switch

• On exit, CPU mode is changed back to the user mode

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

System Calls Example

▪ POSIX vs. Win32

Category POSIX Win32 Description

Process
Management

fork CreateProcess Create a new process (CreateProcess = fork + exec)

waitpid WaitForSingleObject Wait for a process to exit

execve (none) Execute a new program

exit ExitProcess Terminate execution

kill (none) Send a signal

File
Management

open CreateFile Create a file or open an existing file

close CloseHandle Close a file

read ReadFile Read data from a file

write WriteFile Write data to a file

lseek SetFilePointer Move the file pointer

stat GetFileAttibutesEx Get various file attributes

chmod (none) Change the file access permission

File System
Management

mkdir CreateDirectory Create a new directory

rmdir RemoveDirectory Remove an empty directory

link (none) Make a link to a file

unlink DeleteFile Destroy an existing file

chdir SetCurrentDirectory Change the current working directory

mount (none) Mount a file system

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Exceptional Events

▪ Interrupts

• Generated by hardware devices

– Triggered by a signal in INTR or NMI pins (x86_64)

• Asynchronous

▪ Exceptions

• Generated by software executing instructions

– Unintentional: Divide-by-zero, …

– Intentional: syscall instruction in x86_64 or ecall instruction in RISC-V

• Synchronous

• Exception handling is same as interrupt handling

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Exceptions in x86_64

▪ ______

• Intentional

• System call traps, breakpoint traps, special instructions, …

• Return control to “next” instruction

▪ Faults

• Unintentional but possibly recoverable

• Page faults (recoverable), protection faults (unrecoverable), …

• Either re-executing faulting (“current”) instruction or abort

▪ ______

• Unintentional and unrecoverable (parity error, machine check, …)

• Abort the current program or halt the system

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

OS Trap

▪ There must be a special “trap” instruction that:

• Causes an exception, which invokes a kernel handler

• Passes a parameter indicating which system call to invoke

• Saves caller’s state (registers, mode bits)

• Returns to user mode when done with restoring its state

• OS must verify caller’s parameters (e.g., pointers)

Examples:

SYSCALL instruction (x86_64)

ECALL instruction (RISC-V)

User process

Kernel

User process
executing

Perform
system call

Execute system call

Return from
system call

trap
mode bit = 0

return
mode bit = 1

User mode
(mode bit = 1)

Kernel mode
(mode bit = 0)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ count = read(fd, buf, 512);

Implementing System Calls in RISC-V

main: mv a0, <fd>
mv a1, <buf>
li a2, 512
call read
...

read: li a7, 5
ecall
ret

Dispatch
read syscall

handler

❶ store fd to a0
❷ store buf to a1
❸ store 512 to a2

❹ call read()

❺ store read syscall # to a7
❻ trap to

the kernel

❼

find read
handler

❽

jump to
handler

❾ return from trap

❿ return to caller

C library

User program

User space
(@user mode)

Kernel space
(@supervisor
mode) sret

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Typical (Monolithic) OS Structure

Kernel

Arch-dependent kernel code

System Call Interface

Hardware Platform

C Library (libc)

User Application

User space

Kernel space

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Issue #4: Control

▪ How to take the control of the CPU back from the running program?

▪ Cooperative approach

• Each application periodically transfers the control of the CPU to OS by calling

various system calls

• A special system call can be used just to release the CPU (e.g., yield())

• Can be used when ______________________

• What if a process ends up in an infinite loop?

(due to a bug or with a malicious intent)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Timers

▪ A non-cooperative approach

• Use a hardware timer that generates a periodic interrupt

• The timer interrupt transfers control back to OS

▪ The OS preloads the timer with a time to interrupt

• 10ms for Linux 2.4, 1ms for Linux 2.6, 4ms for Linux 5.5

• 10ms 100ms for xv6

▪ The timer is privileged

• Only the OS can load it

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Issue #5: Memory Protection

▪ How can we protect memory?

• Unlike the other hardware resources, we allow applications to access memory

directly without OS intervention. Why?

▪ From malicious users:

OS must protect user applications from each other

▪ For integrity and security:

OS must also protect itself from user applications

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Simplest Memory Protection

▪ Use base and limit registers

▪ Base and limit registers are loaded by OS before starting an application

▪ CPU generates an exception if the memory address is out of bound

▪ Can be used in a simple embedded environment

Prog A

Prog B

Prog C

base reg

limit reg

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Virtual Memory

▪ Modern CPUs are equipped with memory management hardware

• MMU (Memory Management Unit)

▪ MMU provides more sophisticated memory protection mechanisms

• Virtual memory

• Paging: page tables, page protection, TLBs

• Segmentation: segment tables, segment protection

▪ Manipulation of MMU is a privileged operation

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Issue #6: Synchronization

▪ How to coordinate concurrent activities?

• What if multiple concurrent streams access the shared data?

• Interrupt can occur at any time and may interfere with the interrupted code

▪ Turn off/on interrupts?

LOAD R1 Mem[X]

ADD R1 R1, #1

STORE R1 → Mem[X]

LOAD R1 Mem[X]

ADD R1 R1, #1

STORE R1 → Mem[X]

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

Atomic Instructions

▪ Requires special atomic instructions

• Read-Modify-Write (e.g., INC, DEC)

• Test-and-Set

• Compare-and-Swap

• LOCK prefix in x86_64

• LL (Load Locked) & SC (Store Conditional) in MIPS

▪ RISC-V “A” extension

• LR (Load Reserved) & SC (Store Conditional) instructions

• AMO (Atomic Memory Operation) instructions

– Swap, integer add, bitwise AND/OR/XOR, integer max/min (signed/unsigned)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

Summary

▪ The functionality of an OS is limited by architectural features

• Multiprocessing on MS-DOS/8086?

▪ The structure of an OS can be simplified by architectural support

• Interrupt, DMA, atomic instructions, etc.

▪ Most proprietary OSes were developed with the certain architecture in

mind

• SunOS/Solaris for SPARC

• IBM AIX for Power/PowerPC

• HP-UX for PA-RISC

	슬라이드 1: Architectural Support for OS
	슬라이드 2: Computer System Organization
	슬라이드 3: Issue #1: I/O
	슬라이드 4: Interrupts
	슬라이드 5: Interrupt Handling
	슬라이드 6: Data Transfer Modes
	슬라이드 7: Disk I/O Example
	슬라이드 8: Issue #2: Protection
	슬라이드 9: Protected Instructions
	슬라이드 10: CPU Modes of Operation
	슬라이드 11: Issue #3: Servicing Requests
	슬라이드 12: System Calls
	슬라이드 13: System Calls Example
	슬라이드 14: Exceptional Events
	슬라이드 15: Exceptions in x86_64
	슬라이드 16: OS Trap
	슬라이드 17: Implementing System Calls in RISC-V
	슬라이드 18: Typical (Monolithic) OS Structure
	슬라이드 19: Issue #4: Control
	슬라이드 20: Timers
	슬라이드 21: Issue #5: Memory Protection
	슬라이드 22: Simplest Memory Protection
	슬라이드 23: Virtual Memory
	슬라이드 24: Issue #6: Synchronization
	슬라이드 25: Atomic Instructions
	슬라이드 26: Summary

