
File Systems

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

File System Layers

User-level software

File System (Ext4, …)

POSIX API (open, read, write, …)

Generic Block Layer

Generic Block Interface (blk read, blk write)

Device Driver (SAS, SATA, NVMe)

Specific Block Interface (protocol-specific)

Disk interrupt handler

Library

HDD SSD

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Storage: A Logical View

▪ Block interface abstraction

▪ Operations

• Identify(): returns N

• Read(start sector #, # of sectors, buffer addresses)

• Write(start sector #, # of sectors, buffer addresses)

512B 512B 512B

0 1 N-1

Source: Sang Lyul Min (Seoul National Univ.)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Abstraction for Storage

▪ File

• A named collection of related information that is recorded on

persistent storage

• Each file has an associated inode number (internal file ID)

• Inodes are unique within a file system

▪ Directory

• Provides a structured way to organize files

• A special file used to map a user-readable file name to its inode

number: a list of <file name, inode number>

• Hierarchical directory tree: directories can be placed within other

directories

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

File System Components

▪ File contents (data)

• A sequence of bytes

• File systems normally do not care what they are

▪ File attributes (metadata or inode)

• File size

• Block locations

• Owner & access control lists

• Timestamps, …

▪ File name

• The full pathname from the root specifies a file

• e.g., open(“/etc/passwd”, O_RDONLY);

File name

Inode number

File metadata
(Inode)

File data

directory

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

File System: A Mapping Problem

▪ <filename, data, metadata> → <a set of blocks>

meta1 meta2

“a.out” “sky.jpg”

1 323 1 2“

a.
o

u
t”

“

sk
y.

jp
g”

4

m
et

a1

m
et

a2

1

2

3

4

1

2

3

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

File System Design Issues

▪ Goals

• Performance, Reliability, Scalability, …

▪ Design issues

• What information should be kept in metadata?

• How to locate metadata from file name?

– Pathname → metadata

• How to locate data blocks?

– <Metadata, offset> → Data block

• How to manage metadata and data blocks?

– Allocation, reclamation, free space management, etc.

• How to recover the file system after a crash?

• …

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

File Attributes

▪ POSIX Inode

• File type: regular, directory, char/block dev, fifo, symbolic link, …

• Device ID containing the file

• Inode number

• Access permission: rwx for owner(u), group(g), and others(o)

• Number of hard links

• User ID and group ID of the owner

• File size in bytes

• Number of 512B blocks allocated

• Time of last access (atime), time of last modification (mtime), time of last metadata

change (ctime)

• …

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

File Operations
int open(char *pathname, int flags, mode_t mode);

int creat(char *pathname, mode_t mode);

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, void *buf, size_t count);

off_t lseek(int fd, off_t offset, int whence);

int close(int fd);

int fsync(int fd);

int rename(char *oldpath, char *newpath);

int unlink(char *pathname);

int stat(char *path, struct stat *buf);

int link(char *oldpath, char *newpath);

int symlink(char *oldpath, char *newpath);

int mount(char *source, char *target, char *fstype,

unsigned long mountflags, void *data);

int umount(char *target);

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Pathname Translation

▪ open(“/a/b/c”, …)
• Open directory “/” (well known, can always find)

• Search the directory entry for “a”, get location of “a”

• Open directory “a”, search for “b”, get location of “b”

• Open directory “b”, search for “c”, get location of “c”

• Open file “c”

• Permissions are checked at each step

▪ File system spends a lot of time walking down directory paths

• OS caches prefix lookups to enhance performance

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Ensuring Persistence

▪ File system buffers writes into memory (“page cache”)

• Write buffering improves performance

• Up to 30 seconds in Linux

• fsync() flushes all dirty data to disk, and tells disk to flush its write cache to the

media too

• Also flushes metadata information associated with the file

• fdatasync() does not flush modified metadata

int fd = open(“foo”, O_CREAT | O_WRONLY | O_TRUNC);
int rc = write(fd, buffer, size);
rc = fsync(fd);
close(fd);

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Hard vs. Symbolic Links

▪ Hard link: $ ln old.txt new.txt

• Both pathnames use the same inode number

• Cannot tell which name was the “original”

• Inode maintains the number of hard links

• Deleting (unlinking) a file decreases the link count

• Inode is removed only when the link count becomes 0

• Does not work across a file system boundary

▪ Symbolic (or soft) link: $ ln –s old.txt new.txt

• The new file contains a reference to another file or directory in the form of an

absolute or relative pathname

• “Shortcut” in Windows

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

File System Mounting

▪ A file system must be mounted

before it can be available to

processes on the system

▪ Windows: to drive letters

• e.g., C:\, D:\, …

▪ Unix: to an existing empty

directory (“___________”)

• Different file systems can be

mounted in the same tree

• Forms a large, single directory tree

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Consistency Semantics

▪ Unix semantics

• Files can be shared among processes

• Writes to an open file are visible immediately to other users that have this file

open at the same time

▪ AFS _________ semantics

• Writes to an open file are not visible immediately

• Once a file is closed, the changes made to it are visible only in sessions starting

later

▪ Immutable-shared-files semantics

• Once a file is declared as shared by its creator, it cannot be modified

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Summary

▪ Storage

• Abstraction: a sequence of fixed-size blocks

• read(# start sector, # of sectors to read, buffer addresses)

• write(# start sector, # of sectors to write, buffer addresses)

▪ File system

• Abstraction: a hierarchy of variable-size files and directories

• open(pathname, flags)

• read(file descriptor, size in bytes to read, buffer address)

• write(file descriptor, size in bytes to write, buffer address)

• close(file descriptor)

	슬라이드 1: File Systems
	슬라이드 2: File System Layers
	슬라이드 3: Storage: A Logical View
	슬라이드 4: Abstraction for Storage
	슬라이드 5: File System Components
	슬라이드 6: File System: A Mapping Problem
	슬라이드 7: File System Design Issues
	슬라이드 8: File Attributes
	슬라이드 9: File Operations
	슬라이드 10: Pathname Translation
	슬라이드 11: Ensuring Persistence
	슬라이드 12: Hard vs. Symbolic Links
	슬라이드 13: File System Mounting
	슬라이드 14: Consistency Semantics
	슬라이드 15: Summary

