
ConditionVariables

and Mutexes

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Condition Variables and Mutex

▪ Yet another synchronization construct

▪ Condition variables can be also used without monitors in conjunction
with mutexes

▪ Think of a monitor as a language feature
• Under the covers, compiler knows about monitors

• Compiler inserts a mutex to control entry and exit of processes to the monitor's
procedures

• But can be done anywhere in procedure, at finer granularity

▪ With condition variables, the module methods may wait and signal on
independent conditions

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Condition Variables

▪ Provide a mechanism to wait for events

• A condition variable (CV) is an explicit queue

• Threads can put themselves on CV when some state of execution is not met

▪ Used with mutexes

• A mutex is a __________ lock: threads are blocked when it is held by another

thread

• A mutex ensures mutual exclusion for a critical section

• Manipulating some condition related to a CV should be done inside the critical

section

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

CV Operations

▪ wait(cond_t *cv, mutex_t *mutex)
• Assumes mutex is held when wait() is called

• Puts the caller to sleep and releases mutex (atomically)

• When awoken, reacquires mutex before returning

▪ signal(cond_t *cv)
• Wakes a single thread if there are threads waiting on cv

• Unlike semaphores, signal() is lost if there is no thread waiting for it

• ________ semantics: thread continues after sending signal()

▪ broadcast(cond_t *cv)

• Wakes all waiting threads

• If there are no waiting thread, just return doing nothing

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Pthreads Interface

▪ Mutexes and CVs are supported in Pthreads

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t c = PTHREAD_COND_INITIALIZER;

void wait_example() {
pthread_mutex_lock(&m);
pthread_cond_wait(&c, &m);
pthread_mutex_unlock(&m);

}

void signal_example() {
pthread_mutex_lock(&m);
pthread_cond_signal(&c);
pthread_mutex_unlock(&m);

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Joining Threads: An Initial Attempt

mutex_t m = MUTEX_INITIALIZER;
cond_t c = COND_INITIALIZER;

void *child(void *arg) {
thread_exit();
return NULL;

}

int main(int argc, char *argv[]) {
thread_t p;
thread_create(&p, NULL, child, NULL);
thread_join();
return 0;

}

void thread_exit() {
mutex_lock(&m);
cond_signal(&c);
mutex_unlock(&m);

}

void thread_join() {
mutex_lock(&m);
cond_wait(&c, &m);
mutex_unlock(&m);

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Joining Threads: Second Attempt

▪ Keep state in addition to CVs

mutex_t m = MUTEX_INITIALIZER;
cond_t c = COND_INITIALIZER;
int done = 0

void *child(void *arg) {
thread_exit();
return NULL;

}

int main(int argc, char *argv[]) {
thread_t p;
thread_create(&p, NULL, child, NULL);
thread_join();
return 0;

}

void thread_exit() {
done = 1;
cond_signal(&c);

}

void thread_join() {
mutex_lock(&m);
if (done == 0)
cond_wait(&c, &m);

mutex_unlock(&m);
}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Joining Threads: Third Attempt

▪ Always hold mutex while signaling

mutex_t m = MUTEX_INITIALIZER;
cond_t c = COND_INITIALIZER;
int done = 0

void *child(void *arg) {
thread_exit();
return NULL;

}

int main(int argc, char *argv[]) {
thread_t p;
thread_create(&p, NULL, child, NULL);
thread_join();
return 0;

}

void thread_exit() {
mutex_lock(&m);
done = 1;
cond_signal(&c);
mutex_unlock(&m);

}

void thread_join() {
mutex_lock(&m);
while (done == 0)
cond_wait(&c, &m);

mutex_unlock(&m);
}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Bounded Buffer with CVs/Mutexes

mutex_t m;
cond_t notfull, notempty;
int in, out, count;

void produce(data) {
mutex_lock(&m);
while (count == N)
cond_wait(¬_full, &m);

buffer[in] = data;
in = (in+1) % N;
count++;

cond_signal(¬_empty);
mutex_unlock(&m);

}

void consume(data) {
mutex_lock(&m);
while (count == 0)
cond_wait(¬_empty, &m);

data = buffer[out];
out = (out+1) % N;
count--;

cond_signal(¬_full);
mutex_unlock(&m);

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Using Broadcast

▪ Covering condition: when the signaler has no idea on which thread

should be woken up

▪ e.g., memory allocation:

mutex_t m;
cond_t c;
int bytesLeft = MAX_HEAP_SIZE;

void free(void *p, int size) {
mutex_lock(&m);
bytesLeft += size;
cond_broadcast(&c);
mutex_unlock(&m);

}

void *allocate (int size) {
mutex_lock(&m);
while (bytesLeft < size)
cond_wait(&c, &m);

void *ptr = ...;
bytesLeft -= size;
mutex_unlock(&m);
return ptr;

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Semaphores vs. Mutexes + CVs

▪ Both have same expressive power

▪ Implementing semaphores using mutexes and CVs:

typedef struct sema_t {
int v;
cond_t c;
mutex_t m;

} sema_t;

void sema_init(sema_t *s, int v) {
s->v = v;
cond_init(&s->c);
mutex_init(&s->m);

}

void sema_wait(sema_t *s) {
mutex_lock(&s->m);
while (s->v <= 0)
cond_wait(&s->c, &s->m);

s->v--;
mutex_unlock(&s->m);

}
void sema_signal(sema_t *s) {

mutex_lock(&s->m);
s->v++;
cond_signal(&s->c);
mutex_unlock(&s->m);

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Xv6: Sleeplock

struct sleeplock {
uint locked;
struct spinlock lk;
char *name;
int pid;

};

void initsleeplock(struct sleeplock *lk,
char *name) {

initlock(&lk->lk, “sleep lock”);
lk->name = name;
lk->locked = 0;
lk->pid = 0;

}

void acquiresleep(struct sleeplock *lk) {
acquire(&lk->lk);
while (lk->locked) {
sleep(lk, &lk->lk);

}
lk->locked = 1;
lk->pid = myproc()->pid;
release(&lk->lk);

}

void releasesleep(struct sleeplock *lk) {
acquire(&lk->lk);
lk->locked = 0;
lk->pid = 0;
wakeup(lk);
release(&lk->lk);

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Xv6: Sleep & Wakeup
void sleep(void *chan,

struct spinlock *lk) {
struct proc *p = myproc();

if (lk != &p->lock) {
acquire(&p->lock);
release(lk);

}
p->chan = chan;
p->state = SLEEPING;
sched();

p->chan = 0;
if (lk != &p->lock) {
release(&p->lock);
acquire(lk);

}
}

void wakeup(void *chan) {
struct proc *p;

for (p = proc; p < &proc[NPROC]; p++) {
acquire(&p->lock);
if (p->state == SLEEPING &&

p->chan == chan) {
p->state = RUNNABLE;

}
release(&p->lock);

}
}

Concurrency Pitfalls

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Priority Inversion

▪ Priority inversion problem

• A situation where a higher-priority task is unable to run because

a lower-priority task is holding a resource it needs, such as a lock

• What really happened on Mars?

Mars Pathfinder

lock_acquire()

lock_acquire()

lock_release()

Bus management
task

meteorological data
gathering task

communications
task

priority inversion

P
ri

o
ri

ty

https://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html
http://marsprogram.jpl.nasa.gov/missions/images/br_pathfinder.jpg

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Priority Inversion: Solutions

▪ Priority inheritance protocol (PIP)
• The higher-priority task can donate its priority to the lower-priority task holding the

resource it requires

▪ Priority ceiling protocol (PCP)
• The priority of the low-priority task is raised immediately when it gets the resource

• The priority ceiling value must be predetermined

P=H

P=L P=H

P=M

P=H

P=H

P=L

lock_acquire()

lock_acquire()

lock_release()

Thread H

Thread L

Thread M

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Deadlock

▪ Traffic deadlock

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Deadlock: Examples

▪ Example 1

void this() {
acquire(&a);
acquire(&b);
// do this
release(&b);
release(&a);

}

void that() {
acquire(&b);
acquire(&a);
// do that
release(&a);
release(&b);

}

▪ Example 2

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Deadlock Problem

▪ A set of blocked tasks each holding a resource and waiting to acquire a

resource held by another process in the set

Source: A. Silberschatz et al., Operating System Concepts, 2008.

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Necessary Conditions for Deadlock

▪ Mutual exclusion

• Only one task at a time can use a resource

▪ Hold and wait

• A task holding at least one resource is waiting to acquire additional resources held

by other tasks

▪ No preemption

• A resource can be released only voluntarily by the task holding it, after that task

has completed its task

▪ Circular wait

• There must exist a set {T0, T1, .., Tn, T0} of waiting tasks such that T0 is waiting for a

resource that is held by T1, T1 is waiting for a resource held by T2, etc.

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Handling Deadlocks

▪ Deadlock prevention

• Restrain how requests are made

• Ensure that at least one necessary condition cannot hold

▪ Deadlock avoidance

• Require additional information about how resources are to be requested

• Decide to approve or disapprove requests on the fly

▪ Deadlock detection and recovery

• Allow the system to enter a deadlock state and then recover

▪ Just ignore the problem altogether!

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Deadlock Prevention

▪ Avoiding circular wait

• Impose a total ordering of all resource types, as a one-to-

one function F.

– F: R → N, where R = {R1, R2, ..., Rn} is the set of resource types and N is

the set of natural numbers

– e.g., F(lock a)=1, F(lock b)=2, F(lock c)=3, etc.

• Each task requests resources in an increasing order of

enumeration

• Whenever a task requests an instance of Rj, it has released

any resources Ri such that F(Ri) >= F(Rj)

• F should be defined according to the normal order of usage

of the resources in a system

void this() {
acquire(&a);
acquire(&b);
...
release(&b);
release(&a);

}

void that() {
acquire(&a);
acquire(&b);
acquire(&c);
...
release(&c);
release(&b);
release(&a); }

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Summary

▪ Disabling interrupts

• Only for the kernel on a single CPU

▪ Spinlocks

• Busy waiting, implemented using atomic instructions

▪ Semaphores

• Binary semaphore = mutex (lock)

• Counting semaphore

▪ Monitors

• Language construct with condition variables

▪ Mutexes + condition variables

• Used in Pthreads

	슬라이드 1: Condition Variables and Mutexes
	슬라이드 2: Condition Variables and Mutex
	슬라이드 3: Condition Variables
	슬라이드 4: CV Operations
	슬라이드 5: Pthreads Interface
	슬라이드 6: Joining Threads: An Initial Attempt
	슬라이드 7: Joining Threads: Second Attempt
	슬라이드 8: Joining Threads: Third Attempt
	슬라이드 9: Bounded Buffer with CVs/Mutexes
	슬라이드 10: Using Broadcast
	슬라이드 11: Semaphores vs. Mutexes + CVs
	슬라이드 12: Xv6: Sleeplock
	슬라이드 13: Xv6: Sleep & Wakeup
	슬라이드 14: Concurrency Pitfalls
	슬라이드 15: Priority Inversion
	슬라이드 16: Priority Inversion: Solutions
	슬라이드 17: Deadlock
	슬라이드 18: Deadlock: Examples
	슬라이드 19: Deadlock Problem
	슬라이드 20: Necessary Conditions for Deadlock
	슬라이드 21: Handling Deadlocks
	슬라이드 22: Deadlock Prevention
	슬라이드 23: Summary

