Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

Condition Variables
and Mutexes

Condition Variables and Mutex

" Yet another synchronization construct

= Condition variables can be also used without monitors in conjunction
with mutexes

* Think of a monitor as a language feature

* Under the covers, compiler knows about monitors

* Compiler inserts a mutex to control entry and exit of processes to the monitor's
procedures

* But can be done anywhere in procedure, at finer granularity

" With condition variables, the module methods may wait and signal on
independent conditions

Condition Variables

= Provide a mechanism to wait for events
* A condition variable (CV) is an explicit queue

* Threads can put themselves on CV when some state of execution is not met

= Used with mutexes

* A mutexisa lock: threads are blocked when it is held by another
thread

A mutex ensures mutual exclusion for a critical section

* Manipulating some condition related to a CV should be done inside the critical
section

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

CV Operations

» wait(cond t *cv, mutex t *mutex)
* Assumes mutex is held when wait() is called
* Puts the caller to sleep and releases mutex (atomically)
* When awoken, reacquires mutex before returning
* signal(cond t *cv)
* Wakes a single thread if there are threads waiting on cv

* Unlike semaphores, signal() is lost if there is no thread waiting for it

. semantics: thread continues after sending signal()

* broadcast(cond t *cv)
* Wakes all waiting threads

* If there are no waiting thread, just return doing nothing

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Pthreads Interface

* Mutexes and CVs are supported in Pthreads

pthread_mutex t m = PTHREAD MUTEX_ INITIALIZER;
pthread_cond t ¢ = PTHREAD COND INITIALIZER;

void wait_example() {
pthread_mutex_lock(&m);
pthread_cond_wait(&c, &m);
pthread_mutex_unlock(&m);

¥

void signal example() {
pthread mutex_ lock(&m);
pthread_cond_signal(&c);
pthread_mutex_unlock(&m);

¥

Joining Threads: An Initial Attempt

mutex_t m = MUTEX_INITIALIZER;
cond_t c = COND_INITIALIZER;

void *child(void *arg) {
thread exit();
return NULL;

}

int main(int argc, char *argv[]) {
thread t p;
thread create(&p, NULL, child, NULL);
thread_join();
return 0;

}

void thread exit() {
mutex_lock(&m);
cond _signal(&c);
mutex_unlock(&m);

¥

void thread join() {
mutex_ lock(&m);
cond wait(&c, &m);
mutex_unlock(&m);

¥

6

Joining Threads: Second Attempt

= Keep state in addition to CVs

mutex t m = MUTEX INITIALIZER;
cond t ¢ COND_INITIALIZER;
int done = 0

void *child(void *arg) {
thread exit();
return NULL;

¥

int main(int argc, char *argv[]) {
thread t p;
thread create(&p, NULL, child, NULL);
thread join();
return 9;

¥

void thread exit() {
done = 1;
cond_signal(&c);

¥

void thread join() {
mutex_lock(&m);
if (done == 0)
cond wait(&c, &m);
mutex_unlock(&m);

¥

Joining Threads: Third Attempt

= A

ways hold mutex while signaling

mutex_t m = MUTEX INITIALIZER;
cond_t c COND_INITIALIZER;
int done = 0

void *child(void *arg) {
thread exit();
return NULL;

¥

int main(int argc, char *argv[]) {
thread_t p;
thread create(&p, NULL, child, NULL);
thread_join();
return 0;

¥

void thread exit() {
mutex_lock(&m);
done = 1;
cond_signal(&c);
mutex_unlock(&m);

¥

void thread join() {
mutex_lock(&m);
while (done == 0)
cond wait(&c, &m);
mutex_unlock(&m);

¥

Bounded Buffer with CVs/Mutexes

mutex_t m;
cond_t notfull, notempty;
int in, out, count;

void produce(data) {
mutex_lock(&m);
while (count == N)
cond wait(¬_full, &m);

buffer[in] = data;
in = (in+l1l) % N;
count++;

cond_signal(¬_empty);
mutex_unlock(&m);

void consume(data) {
mutex_lock(&m);
while (count == 0)
cond wait(¬_empty, &m);

data = buffer[out];
out = (out+l) % N;
count--;

cond _signal(¬_ full);
mutex_unlock(&m);

Using Broadcast

= Covering condition: when the signaler has no idea on which thread
should be woken up

" e.g., memory allocation:

mutex_t m; void *allocate (int size) {
cond t c; mutex_lock(&m);
int byteslLeft = MAX HEAP_SIZE; while (bytesLeft < size)

cond wait(&c, &m);
void free(void *p, int size) {

mutex_lock(&m); void *ptr = ...;
bytesLeft += size; bytesLeft -= size;
cond _broadcast(&c); mutex_unlock(&m);
mutex_unlock(&m); return ptr;

} }

10

Semaphores vs. Mutexes + CVs

* Both have same expressive power

" Implementing semaphores using mutexes and CVs:

void sema wait(sema_t *s) {

typedef struct sema t { mutex_lock(&s->m);
int v; while (s->v <= 0)
cond_t c; cond wait(&s->c, &s->m);
mutex_t m; S->V--;
} sema_t; mutex_unlock(&s->m);
}
void sema init(sema_t *s, int v) { void sema signal(sema_t *s) {
S->V = V; mutex_ lock(&s->m);
cond init(&s->c); S->V++;
mutex_init(&s->m); cond _signal(&s->c);
} mutex_unlock(&s->m);

11

Xvé6: Sleeplock

struct sleeplock {
uint locked;
struct spinlock 1lk;
char *name;
int pid;

¥

void initsleeplock(struct sleeplock *1k,
char *name) {
initlock(&lk->1k, “sleep lock™);
lk->name = name;
lk->1locked = 0;
lk->pid = 0;

void acquiresleep(struct sleeplock *1k) {
acquire(&lk->1k);
while (1lk->locked) {
sleep(1lk, &lk->1k);
}
lk->locked = 1;
lk->pid = myproc()->pid;
release(&lk->1k);
}

void releasesleep(struct sleeplock *1k) {
acquire(&lk->1k);
lk->1ocked = 0;
lk->pid = 0;
wakeup (1k);
release(&lk->1k);

12

Xvé6: Sleep & Wakeup

void sleep(void *chan,

¥

struct spinlock *1k) {
struct proc *p = myproc();

if (lk !'= &p->lock) {
acquire(&p->lock);
release(1lk);

}

p->chan = chan;

p->state = SLEEPING;

sched();

p->chan = 0;

if (lk !'= &p->lock) {
release(&p->1lock);
acquire(1lk);

}

void wakeup(void *chan) {

struct proc *p;

for (p = proc; p < &proc[NPROC]; p++) {
acquire(&p->lock);
if (p->state == SLEEPING &&
p->chan == chan) {
p->state = RUNNABLE;
}

release(&p->lock);

¥

13

Concurrency Pitfalls

Priority Inversion

" Priority inversion problem

* A situation where a higher-priority task is unable to run because
a lower-priority task is holding a resource it needs, such as a lock

* What really happened on Mars!?

lock_acquire()

| |
task | |

communications |
task I

- —

Priority

meteorological data
gathering task

lock_acquire() lock_release()

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

https://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html
http://marsprogram.jpl.nasa.gov/missions/images/br_pathfinder.jpg

Priority Inversion: Solutions

" Priority inheritance protocol (PIP)

* The higher-priority task can donate its priority to the lower-priority task holding the

resource it requires

lock_acquire()

Thread M

P=M

P=H
Thread H
A
1
1
]
1

P=L

Thread L

P=L

lock_acquire() lock_release()

" Priority ceiling protocol (PCP)

* The priority of the low-priority task is raised immediately when it gets the resource

* The priority ceiling value must be predetermined

16

Deadlock

= Traffic deadlock

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu

.ac.kr)

17

Deadlock: Examples

= Example |

void this() {
acquire(&a);
acquire(&b);
// do this
release(&b);
release(&a);

}

void that() {
acquire(&b);
acquire(&a);
// do that
release(&a);
release(&b);

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

" Example 2

18

Deadlock Problem

" A set of blocked tasks each holding a resource and waiting to acquire a
resource held by another process in the set

R, R,
P
® R 1 /O

=
=
®
OEOEEG i
R,
[]

\

R, :

R,

Source: A. Silberschatz et al., Operating System Concepts, 2008.

19

Necessary Conditions for Deadlock

= Mutual exclusion

* Only one task at a time can use a resource

= Hold and wait

* A task holding at least one resource is waiting to acquire additional resources held
by other tasks

* No preemption
* A resource can be released only voluntarily by the task holding it, after that task
has completed its task

® Circular wait

* There must exist a set {T,, T}, .., T., T,} of waiting tasks such that T, is waiting for a
resource that is held by T, T, is waiting for a resource held by T,, etc.

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Handling Deadlocks

" Deadlock prevention
* Restrain how requests are made
* Ensure that at least one necessary condition cannot hold

* Deadlock avoidance
* Require additional information about how resources are to be requested

* Decide to approve or disapprove requests on the fly

* Deadlock detection and recovery
* Allow the system to enter a deadlock state and then recover

" |ust ignore the problem altogether!

21

Deadlock Prevention

= Avoiding circular wait

* Impose a total ordering of all resource types, as a one-to-
one function F.

— F:R > N,where R ={R,R,, ..., R } is the set of resource types and N is
the set of natural numbers

— e.g., F(lock a)=1, F(lock b)=2, F(lock c)=3, etc.

* Each task requests resources in an increasing order of
enumeration

* Whenever a task requests an instance of R, it has released
any resources R; such that F(R) >= F(R)

* F should be defined according to the normal order of usage
of the resources in a system

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

void this() {
acquire(&a);
acquire(&b);

release(&b);
release(&a);

}

void that() {
acquire(&a);
acquire(&b);
acquire(&c);

release(&c);
release(&b);
release(&a);

22

Summary

* Disabling interrupts
* Only for the kernel on a single CPU

= Spinlocks

* Busy waiting, implemented using atomic instructions

= Semaphores
* Binary semaphore = mutex (= lock)

* Counting semaphore

= Monitors

* Language construct with condition variables

= Mutexes + condition variables
e Used in Pthreads

23

	슬라이드 1: Condition Variables and Mutexes
	슬라이드 2: Condition Variables and Mutex
	슬라이드 3: Condition Variables
	슬라이드 4: CV Operations
	슬라이드 5: Pthreads Interface
	슬라이드 6: Joining Threads: An Initial Attempt
	슬라이드 7: Joining Threads: Second Attempt
	슬라이드 8: Joining Threads: Third Attempt
	슬라이드 9: Bounded Buffer with CVs/Mutexes
	슬라이드 10: Using Broadcast
	슬라이드 11: Semaphores vs. Mutexes + CVs
	슬라이드 12: Xv6: Sleeplock
	슬라이드 13: Xv6: Sleep & Wakeup
	슬라이드 14: Concurrency Pitfalls
	슬라이드 15: Priority Inversion
	슬라이드 16: Priority Inversion: Solutions
	슬라이드 17: Deadlock
	슬라이드 18: Deadlock: Examples
	슬라이드 19: Deadlock Problem
	슬라이드 20: Necessary Conditions for Deadlock
	슬라이드 21: Handling Deadlocks
	슬라이드 22: Deadlock Prevention
	슬라이드 23: Summary

