
Monitors

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Monitors (1)

▪ Monitor is a programming language construct that supports controlled

access to shared data

• Synchronization code added by compiler, enforced at runtime

• Allows the safe sharing of an abstract data type among concurrent processes

▪ A monitor is a software module that encapsulates:

• Shared data structures

• ___________ that operate on the shared data

• Synchronization between concurrent processes that invoke those procedures

▪ Monitor protects the data from unstructured access

• Guarantees only access data through procedures, hence in legitimate ways

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Monitors (2)

▪ Mutual exclusion

• Only one process can be executing inside at any time

– Thus, synchronization implicitly associated with monitor

• If a second process tries to enter a monitor procedure, it blocks until the first has

left the monitor

– More restrictive than semaphores, but easier to use most of the time

▪ Condition variables

• Once inside, a process may discover it can't continue, and may wish to sleep, or

allow some other waiting process to continue

• Condition variables are provided within monitor

– Processes can wait or signal others to continue

– Can only be accessed from inside monitor

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Monitors (3)

waiting queue of processes
trying to enter the monitor

at most one process
in monitor at a time

Source: A. Silberschatz et al., Operating System Concepts, 2008.

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Condition Variables

▪ Provide a mechanism to wait for events (a "rendezvous point")

▪ wait(c)
• Release monitor lock, so somebody else can get in

• Wait for somebody else to signal condition

• Thus, condition variables have wait queues

▪ signal(c)
• Wake up at most one waiting process

• If no waiting processes, signal is lost

• This is different from semaphores: no history!

▪ broadcast(c)
• Wake up all waiting processes

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Bounded Buffer with Monitors
Monitor bounded_buffer {

buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) {
while (array “resources” is full)

wait(not_full);
add “x” to array “resources”;
signal(not_empty);

}

procedure remove_entry(resource *x) {
while (array “resources” is empty)

wait(not_empty);
*x = get resource from array “resources”
signal(not_full);

}
}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Monitors Semantics

▪ Hoare monitors

• signal(c) immediately switches from the caller to a waiting thread, blocking the

caller

– The condition that the waiter was anticipating is guaranteed to hold when waiter executes

– Signaler must restore monitor invariants before signaling

▪ Mesa monitors

• signal(c) places a waiter on the ready queue, but signaler continues inside

monitor

– Condition is not necessarily true when waiter runs again

– Being woken up is only a hint that something has changed

– Must recheck conditional case

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Monitors Semantics: Comparison

▪ Mesa monitors easier to use

• More efficient

• Fewer switches

• Directly supports broadcast()

▪ Hoare monitors leave less to chance

• When wake up, condition guaranteed to be what you expect

Hoare monitors

if (notReady)
wait(c);

Mesa monitors

while (notReady)
wait(c);

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Monitors using Semaphores

▪ _______ monitors

Semaphore mutex = 1;
Semaphore next = 0;
int next_count = 0;
struct condition {

Semaphore sem;
int count;

} x = {0, 0};

procedure F() {
wait(mutex);
…
Body of F
…
if (next_count)

signal(next);
else

signal(mutex);
}

procedure cond_wait(x) {
x.count++;
if (next_count)

signal(next);
else

signal(mutex);
wait(x.sem);
x.count--;

}

procedure cond_signal(x) {
if (x.count) {

next_count++;
signal(x.sem);
wait(next);
next_count--;

}
}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Monitors vs. Semaphores

▪ Condition variables do not have any _________, but semaphores do

▪ On a condition variable signal(), if no one is waiting, the signal is a

no-op

• If a thread then does wait() on the condition variable, it waits

▪ On a semaphore signal(), if no one is waiting, the value of the

semaphore is increased

• If a thread then does wait() on the semaphore, the value is decreased and the

thread continues

	슬라이드 1: Monitors
	슬라이드 2: Monitors (1)
	슬라이드 3: Monitors (2)
	슬라이드 4: Monitors (3)
	슬라이드 5: Condition Variables
	슬라이드 6: Bounded Buffer with Monitors
	슬라이드 7: Monitors Semantics
	슬라이드 8: Monitors Semantics: Comparison
	슬라이드 9: Monitors using Semaphores
	슬라이드 10: Monitors vs. Semaphores

