
Semaphores

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Synchronization Types

▪ Mutual exclusion

• Only one thread in a critical section at a time

▪ Waiting for events

• One thread waits for another to complete

some action before it continues

• Producer/consumer

– Multiple producers, multiple consumers

• Pipeline

– A series of producer and consumer

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Higher-level Synchronization

▪ Spinlocks and disabling interrupts are not enough

• Useful only for very short and simple critical sections

• Need to block threads when lock is held by others (mutexes)

• Need to block threads until a certain condition is met

▪ Higher-level synchronization mechanisms

• Semaphores

• Monitors

• Mutexes and condition variables (used in Pthreads)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Semaphores

▪ A synchronization primitive higher level than locks

• Invented by Dijkstra in 1968, as part of the THE OS

• Does not require busy waiting

• A semaphore is an object with an integer value (state)

• State cannot be directly accessed by user program, but it determines the behavior

of semaphore operations

▪ Manipulated atomically through two operations

• Wait(): decrement the value, and wait until the value is >= 0:

Also called as P() (after Dutch word for test), down(), or sem_wait()

• Signal(): increment the value, then wake up a single waiter:

Also called as V() (after Dutch word for increment), up(), or sem_post()

Image from https://commons.wikimedia.org/wiki/File:Semaphore_signals,_Harrogate_railway_station_%2819th_April_2019%29_001.jpg

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Implementing Semaphores

void wait(semaphore *S) {
S->value--;
if (S->value < 0) {
add this process to S->Q;
block();

}
}

void signal(semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->Q;
wakeup(P);

}
}

wait() / signal()
are critical sections!
Hence, they must be
executed atomically

with respect to
each other.

HOW??

typedef struct {
int value;
struct process *Q;

} semaphore;

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Types of Semaphores

▪ Binary semaphore (≈ mutex)

• Semaphore value is initialized to 1

• Guarantees mutually exclusive access to resource

• Only one thread allowed entry at a time

▪ __________ semaphore

• Semaphore value is initialized to N

• Represents a resource with many units available

• Allows threads to enter as long as more units are available

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Bounded Buffer Problem (1)

▪ Producer/consumer problem

• There is a set of resource buffers shared by producers and consumers

• Producer inserts resources into the buffer

– Output, disk blocks, memory pages, etc.

• Consumer removes resources from the buffer

– Whatever is generated by the producer

• Producer and consumer execute at different rates

– No serialization of one behind the other

– Tasks are independent

– The buffer allows each to run without explicit handoff

• pipe: single producer, single consumer

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Bounded Buffer Problem (2)

▪ No synchronization

int count;

struct item buffer[N];
int in, out;

in

out

void produce(data)
{

while (count==N);
buffer[in] = data;
in = (in+1) % N;
count++;

}

Producer

void consume(&data)
{

while (count==0);
*data = buffer[out];
out = (out+1) % N;
count--;

}

Consumer

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Bounded Buffer Problem (3)

▪ Implementation with semaphores

Semaphore
mutex = 1;
empty = N;
full = 0;

struct item buffer[N];
int in, out;

in

out

void produce(data)
{

wait(&empty);
wait(&mutex);
buffer[in] = data;
in = (in+1) % N;
signal(&mutex);
signal(&full);

}

Producer

void consume(&data)
{

wait(&full);
wait(&mutex);
*data = buffer[out];
out = (out+1) % N;
signal(&mutex);
signal(&empty);

}

Consumer

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Readers-Writers Problem (1)

▪ Sharing resource among multiple readers and writers

• An object is shared among several threads

• Some threads only read the object, others only write it

• We can allow multiple readers at a time

• We can only allow one writer at a time

▪ Implementation with semaphores

• readcount: # of threads reading object

• mutex: control access to readcount

• rw: exclusive writing or reading

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Readers-Writers Problem (2)

// number of readers
int readcount = 0;

// mutex for readcount
Semaphore mutex = 1;

// mutex for reading/writing
Semaphore rw = 1;

void Writer()
{
wait(&rw);
...
// Write
...
signal(&rw);

}

void Reader()
{
wait(&mutex);
readcount++;
if (readcount == 1)

wait(&rw);
signal(&mutex);
...

// Read

...
wait(&mutex);
readcount--;
if (readcount == 0)

signal(&rw);
signal(&mutex);

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Readers-Writers Problem (3)

▪ If there is a writer

• The first reader blocks on rw

• All other readers will then block on mutex

▪ Once a writer exits, all readers can fall through

• Which reader gets to go first?

▪ The last reader to exit signals waiting writer

• Can new readers get in while writer is waiting?

▪ When a writer exits, if there is both a reader and writer waiting, which

one goes next is up to scheduler

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Dining Philosophers Problem (1)

▪ A classic synchronization problem by Dijkstra, 1965

▪ Modeled after the lives of five philosophers sitting around a round table

▪ Each philosopher repeats forever:

• Thinking

• Pick up two forks

• Eating

• Put down two forks

▪ Pick one fork at a time

Image from https://en.wikipedia.org/wiki/Dining_philosophers_problem

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Dining Philosophers Problem (2)

▪ A simple solution

// initialized to 1
Semaphore forks[N];

#define L(i) (i)
#define R(i) ((i + 1) % N)

void philosopher(int i)
{
while (1) {

think();
pickup(i);
eat();
putdown(i);

}
}

void pickup(int i) {
wait(&forks[L(i)]);
wait(&forks[R(i)]);

}

void putdown(int i) {
signal(&forks[L(i)]);
signal(&forks[R(i)]);

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Dining Philosophers Problem (3)

▪ A deadlock-free solution

// initialized to 1
Semaphore forks[N];

#define L(i) (i)
#define R(i) ((i + 1) % N)

void philosopher(int i)
{
while (1) {

think();
pickup(i);
eat();
putdown(i);

}
}

void pickup(int i) {
if (i == (N-1)) {

wait(&forks[R(i)]);
wait(&forks[L(i)]);

} else {
wait(&forks[L(i)]);
wait(&forks[R(i)]);

}
}

void putdown(int i) {
signal(&forks[L(i)]);
signal(&forks[R(i)]);

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Summary

▪ Pros

• Simple, yet powerful

• Same primitive can be used for both critical sections (mutual exclusion) and

coordination among threads (scheduling)

▪ Cons

• They are essentially shared global variables; can be accessed from anywhere

(bad software engineering)

• There is no connection between the semaphore and the data being controlled by it

• No control over their use, no guarantee of proper usage

• Hard to program with and prone to bugs

	슬라이드 1: Semaphores
	슬라이드 2: Synchronization Types
	슬라이드 3: Higher-level Synchronization
	슬라이드 4: Semaphores
	슬라이드 5: Implementing Semaphores
	슬라이드 6: Types of Semaphores
	슬라이드 7: Bounded Buffer Problem (1)
	슬라이드 8: Bounded Buffer Problem (2)
	슬라이드 9: Bounded Buffer Problem (3)
	슬라이드 10: Readers-Writers Problem (1)
	슬라이드 11: Readers-Writers Problem (2)
	슬라이드 12: Readers-Writers Problem (3)
	슬라이드 13: Dining Philosophers Problem (1)
	슬라이드 14: Dining Philosophers Problem (2)
	슬라이드 15: Dining Philosophers Problem (3)
	슬라이드 16: Summary

