Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

Threads

Concurrency

= Virtualization
* Virtual CPUs

* Virtual memory

= Concurrency
* In the user space by running multi-threaded programs

* In the kernel space too!

= OS Issues
* How to support multi-threaded programs!?

* How to coordinate accesses to shared resources!?

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Motivation

" Process is a cool abstraction to run a new program

* OS provides protection and isolation among processes

" But,...
* A single process cannot benefit from multi-cores
* Very cumbersome to write a program with many cooperating processes
* Expensive to create a new process
* High communication overheads between processes

* Expensive context switching between processes

* How can we increase concurrency within a process cheaply!?

What is a Thread?

Process 1 Process 1 Process 1

\ | |

= A thread of control:

a sequence of instructions being
executed in a program @

" A thread has its own Thyead
* Thread ID Karn|
* Set of registers including PC & SP Process
e Stack 1
* Threads share an address space @
" Separate the concept of a process

Thread

from its execution state

Kernel

Using Threads

#include <stdio.h>
#include <pthread.h>

void *hello(void *arg) {
printf(“hello, world\n”);

¥

int main() {
pthread t tid;

pthread_create(&tid, NULL, hello, NULL);
printf(“hello from main thread\n”);

)

Address Space with Threads

PC (T2)—>
PC (T1)—> Code
PC(T3)—>
Data
Heap
SP (T2)
Stack
SP (T3
(T3) Stack
SP (T1)

Stack

>

" code

program

Processes vs. [hreads

" A thread is bound to a single process

= A process, however, can have multiple
threads

* Sharing data among threads is cheap;
all see the same address space

* Thread is a unit of scheduling

" Processes are containers in which threads execute

* PID, address space, user and group ID,
open file descriptors, current working directory, etc.

" Processes are static, while threads are dynamic entities

Image source: https://dribbble.com/shots/1395795-factory-cross-section-progress-4

Benefits of Multi-threading

* Creating concurrency is cheap

" |mproves program structure

* Divide large task across several cooperative threads

* Throughput

* By overlapping computation with I/O operations

= Responsiveness

* Can handle concurrent events (e.g., web servers)
= Resource sharing

s Utilization of multi-core architectures

* Allows building parallel programs

Threads Interface

= Pthreads (POSIX Threads)
* A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
* API specifies the behavior of the thread library
* Implementation is up to the development of the library

* Common in Unix-like operating systems:
e.g., Linux, Mac OS X, Solaris, FreeBSD, NetBSD, OpenBSD, etc.

= Microsoft Windows has its own Thread API
* Win32/Winé4 threads

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Pthreads: Thread Creation / Termination

int pthread create (pthread t *tid,
pthread attr_t *attr,

void *(start_routine)(void *),
void *arg);

void pthread_exit (void *retval);

int pthread_join (pthread_t tid, void **retval);

10

Pthreads: Mutexes

int pthread mutex _init
(pthread mutex_ t *mutex,
const pthread mutexattr t *mattr);

void pthread mutex_destroy
(pthread _mutex_t *mutex);

void pthread mutex_ lock
(pthread _mutex_ t *mutex);

void pthread mutex unlock
(pthread _mutex_ t *mutex);

11

Pthreads: Condition Variables

int pthread cond init
(pthread _cond_t *cond,
const pthread condattr_t *cattr);

void pthread cond destroy
(pthread cond _t *cond);

void pthread cond wait
(pthread cond t *cond,
pthread mutex_t *mutex);

void pthread cond signal
(pthread cond t *cond);

void pthread cond broadcast
(pthread cond _t *cond);

12

Threading Issue: fork() / exec()

= When a thread calls fork(),

* Does the new process duplicate all the threads!?

* Is the new process single-threaded!?
* In Pthreads, fork() duplicates only a calling thread

" |n the Unix international standard,
* fork() duplicates all parent threads in the child
* forkl() duplicates only a calling thread

* Normally, exec () replaces the entire process

13

Threading Issue: Thread Cancellation

* The task of terminating a thread before it has completed

" Asynchronous cancellation
* Terminates the target thread immediately

* What happens if the target thread is holding a resource, or it is in the middle of
updating shared resources!?

s Deferred cancellation

* The target thread is terminated at the cancellation points
* The target thread periodically check if it should be cancelled

* Pthreads API supports both asynchronous and deferred cancellation

14

Threading Issue: Signal Handling

* Where should a signal be delivered?

* To the thread to which the signal applies

* For synchronous signals
* To every thread in the process
" To a dedicated thread
* Solaris 2: Assign a specific thread to receive all signals for the process

" To certain threads in the process

* Typically, only to a single thread found in a process that is not blocking the signal
* Pthreads: per-process pending signals, per-thread blocked signal mask

15

Threading Issue: Libraries

" errno

* Each thread should have its own independent version of the errno variable

* Multithread-safe (MT-safe)

* A set of functions is said to be MT-safe, when the functions may be called by more
than one thread at a time without requiring any other action on the caller’s part

* Pure functions that access no global data or access only read-only global data are
trivially MT-safe

* Functions that modify the global state must be made MT-safe by synchronizing
access to the shared data

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

Implementing Threads

Kernel-level Threads

" OS-managed threads

OS manages threads and processes

All thread operations are implemented in
the kernel

Thread creation and management requires
system calls

OS schedules all the threads

Creating threads are cheaper than creating
processes

Windows, Linux, Solaris, Mac OS X, AlX,
HP-UX, ...

Process

\

Thread

/

\

Kernel
—
Process Thread
table table

18

Kernel-level Threads: Limitations

* They can still be too expensive
* Thread operations are all system calls

= Must maintain kernel state for each thread

* Can place limit on the number of simultaneous threads
" OS must scale well with increasing number of threads

» Kernel-level threads have to be general to support the needs of all
programmers, languages, runtime systems, etc.

19

User-level Threads

* Threads are implemented at the user level

* A library linked into the program Process Thread
manages the threads \ /

 Threads are invisible to the OS i \

* All the thread operations are s
done via procedure calls space {
(no kernel involvement) =

e Small and fast: L

|0-100x faster than kernel-level threads Kernel { /
Kernel

Space
* Portable P X
* Tunable to meet application needs Run_ﬂ/me e Prbcess

* Windows fibers system table table

User-level Threads: Limitations

= Usually, rely on non-preemptive scheduling

* Preemptive scheduling can be emulated using Unix signals

" OS can make poor decisions as it is not aware of user-level threads
* Scheduling a process with only idle threads
* Blocking the entire process when a thread initiates I/O
* Unscheduling a process with a thread holding a lock

= All blocking system calls should be emulated in the library via non-
blocking calls to the kernel

* Requires coordination between kernel and thread manager

* Cannot leverage multi-core CPUs

21

Threading Model: One-to-One (1:1)

= Each user-level thread
maps to a kernel thread

user thread
" Most popular

= Windows XP/7/10,
OS/2, Linux, Solaris 9+

OEE)E) —

Threading Model: Many-to-One (N:1)

" Many user-level threads mapped

to a single kernel thread

user thread

* Used on systems that do not
support kernel-level threads

= Solaris Green Threads,
GNU Portable Threads

kernel thread

Threading Model

Allows many user-level
threads to be mapped to
many kernel threads

Allows the OS to create
a sufficient number of
kernel threads

Solaris prior to v9,
IRIX, HP-UX, Trué4

: Many-to-Many (M:N)

% % % % user thread
9 9 9 kernel thread

24

Linux Thread Implementation

" |n Linux, the basic unit is a “‘task”
* In a program that only calls fork() and/or exec(), a task is identical to a process

* One-to-one model
* Linux creates a task for each application thread using clone() system call

" Linux threads: separate tasks that may share one or more resources

* Resources can be shared selectively in clone()
« CLONE_ VM, CLONE_FS, CLONE_FILES, CLONE_SIGHAND, etc.

* POSIX threads: a single process that contains one or more threads

* CPU registers, user stack, and blocked signal mask are specific to a thread, while all
other resources are global to a process

* Former POSIX compatibility problems: signal handling, exit (), exec(),

25

Summary: OS Classification

threads per
addr space:

L O
©
©
©
[T
(@
= =

spaces:

MS/DOS
Early Macintosh

Many embedded
OSes
(VxWorks, uClinux, ..)

Traditional UNIX
Xv6

Mach, OS/2, Linux,
Windows, Mac OS X,
Solaris, HP-UX

26

	슬라이드 1: Threads
	슬라이드 2: Concurrency
	슬라이드 3: Motivation
	슬라이드 4: What is a Thread?
	슬라이드 5: Using Threads
	슬라이드 6: Address Space with Threads
	슬라이드 7: Processes vs. Threads
	슬라이드 8: Benefits of Multi-threading
	슬라이드 9: Threads Interface
	슬라이드 10: Pthreads: Thread Creation / Termination
	슬라이드 11: Pthreads: Mutexes
	슬라이드 12: Pthreads: Condition Variables
	슬라이드 13: Threading Issue: fork() / exec()
	슬라이드 14: Threading Issue: Thread Cancellation
	슬라이드 15: Threading Issue: Signal Handling
	슬라이드 16: Threading Issue: Libraries
	슬라이드 17: Implementing Threads
	슬라이드 18: Kernel-level Threads
	슬라이드 19: Kernel-level Threads: Limitations
	슬라이드 20: User-level Threads
	슬라이드 21: User-level Threads: Limitations
	슬라이드 22: Threading Model: One-to-One (1:1)
	슬라이드 23: Threading Model: Many-to-One (N:1)
	슬라이드 24: Threading Model: Many-to-Many (M:N)
	슬라이드 25: Linux Thread Implementation
	슬라이드 26: Summary: OS Classification

