
Threads

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Concurrency

▪ Virtualization

• Virtual CPUs

• Virtual memory

▪ Concurrency

• In the user space by running multi-threaded programs

• In the kernel space too!

▪ OS Issues

• How to support multi-threaded programs?

• How to coordinate accesses to shared resources?

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Motivation

▪ Process is a cool abstraction to run a new program

• OS provides protection and isolation among processes

▪ But, …

• A single process cannot benefit from multi-cores

• Very cumbersome to write a program with many cooperating processes

• Expensive to create a new process

• High communication overheads between processes

• Expensive context switching between processes

▪ How can we increase concurrency within a process cheaply?

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

What is a Thread?

▪ A thread of control:

a sequence of instructions being

executed in a program

▪ A thread has its own

• Thread ID

• Set of registers including PC & SP

• Stack

▪ Threads share an address space

▪ Separate the concept of a process

from its execution state

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Using Threads

#include <stdio.h>
#include <pthread.h>

void *hello(void *arg) {
printf(“hello, world\n”);
...

}

int main() {
pthread_t tid;

pthread_create(&tid, NULL, hello, NULL);
printf(“hello from main thread\n”);
...

}

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Address Space with Threads

Heap

Stack

Data

Code

program

code

data

PC (T1)

SP (T1)

PC (T2)

PC (T3)

Stack

Stack
SP (T2)

SP (T3)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Processes vs. Threads

▪ A thread is bound to a single process

▪ A process, however, can have multiple

threads

▪ Sharing data among threads is cheap;

all see the same address space

▪ Thread is a unit of scheduling

▪ Processes are containers in which threads execute

• PID, address space, user and group ID,

open file descriptors, current working directory, etc.

▪ Processes are static, while threads are dynamic entities

Image source: https://dribbble.com/shots/1395795-factory-cross-section-progress-4

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Benefits of Multi-threading

▪ Creating concurrency is cheap

▪ Improves program structure

• Divide large task across several cooperative threads

▪ Throughput

• By overlapping computation with I/O operations

▪ Responsiveness

• Can handle concurrent events (e.g., web servers)

▪ Resource sharing

▪ Utilization of multi-core architectures

• Allows building parallel programs

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Threads Interface

▪ Pthreads (POSIX Threads)

• A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

• API specifies the behavior of the thread library

• Implementation is up to the development of the library

• Common in Unix-like operating systems:

e.g., Linux, Mac OS X, Solaris, FreeBSD, NetBSD, OpenBSD, etc.

▪ Microsoft Windows has its own Thread API

• Win32/Win64 threads

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Pthreads: Thread Creation / Termination

int pthread_create (pthread_t *tid,
pthread_attr_t *attr,
void *(start_routine)(void *),
void *arg);

void pthread_exit (void *retval);

int pthread_join (pthread_t tid, void **retval);

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Pthreads: Mutexes

int pthread_mutex_init
(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mattr);

void pthread_mutex_destroy
(pthread_mutex_t *mutex);

void pthread_mutex_lock
(pthread_mutex_t *mutex);

void pthread_mutex_unlock
(pthread_mutex_t *mutex);

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Pthreads: Condition Variables

int pthread_cond_init
(pthread_cond_t *cond,
const pthread_condattr_t *cattr);

void pthread_cond_destroy
(pthread_cond_t *cond);

void pthread_cond_wait
(pthread_cond_t *cond,
pthread_mutex_t *mutex);

void pthread_cond_signal
(pthread_cond_t *cond);

void pthread_cond_broadcast
(pthread_cond_t *cond);

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Threading Issue: fork() / exec()
▪ When a thread calls fork(),

• Does the new process duplicate all the threads?

• Is the new process single-threaded?

▪ In Pthreads, fork() duplicates only a calling thread

▪ In the Unix international standard,

• fork() duplicates all parent threads in the child

• fork1() duplicates only a calling thread

▪ Normally, exec() replaces the entire process

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Threading Issue: Thread Cancellation

▪ The task of terminating a thread before it has completed

▪ Asynchronous cancellation

• Terminates the target thread immediately

• What happens if the target thread is holding a resource, or it is in the middle of

updating shared resources?

▪ Deferred cancellation

• The target thread is terminated at the cancellation points

• The target thread periodically check if it should be cancelled

▪ Pthreads API supports both asynchronous and deferred cancellation

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Threading Issue: Signal Handling

▪ Where should a signal be delivered?

▪ To the thread to which the signal applies

• For synchronous signals

▪ To every thread in the process

▪ To a dedicated thread

• Solaris 2: Assign a specific thread to receive all signals for the process

▪ To certain threads in the process

• Typically, only to a single thread found in a process that is not blocking the signal

• Pthreads: per-process pending signals, per-thread blocked signal mask

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Threading Issue: Libraries

▪ errno
• Each thread should have its own independent version of the errno variable

▪ Multithread-safe (MT-safe)

• A set of functions is said to be MT-safe, when the functions may be called by more

than one thread at a time without requiring any other action on the caller’s part

• Pure functions that access no global data or access only read-only global data are

trivially MT-safe

• Functions that modify the global state must be made MT-safe by synchronizing

access to the shared data

Implementing Threads

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Kernel-level Threads

▪ OS-managed threads

• OS manages threads and processes

• All thread operations are implemented in

the kernel

• Thread creation and management requires

system calls

• OS schedules all the threads

• Creating threads are cheaper than creating

processes

• Windows, Linux, Solaris, Mac OS X, AIX,

HP-UX, …

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Kernel-level Threads: Limitations

▪ They can still be too expensive

▪ Thread operations are all system calls

▪ Must maintain kernel state for each thread

• Can place limit on the number of simultaneous threads

▪ OS must scale well with increasing number of threads

▪ Kernel-level threads have to be general to support the needs of all

programmers, languages, runtime systems, etc.

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

User-level Threads

▪ Threads are implemented at the user level

• A library linked into the program

manages the threads

• Threads are invisible to the OS

• All the thread operations are

done via procedure calls

(no kernel involvement)

• Small and fast:

10-100x faster than kernel-level threads

• Portable

• Tunable to meet application needs

• Windows fibers

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

User-level Threads: Limitations

▪ Usually, rely on non-preemptive scheduling

• Preemptive scheduling can be emulated using Unix signals

▪ OS can make poor decisions as it is not aware of user-level threads

• Scheduling a process with only idle threads

• Blocking the entire process when a thread initiates I/O

• Unscheduling a process with a thread holding a lock

▪ All blocking system calls should be emulated in the library via non-

blocking calls to the kernel

• Requires coordination between kernel and thread manager

▪ Cannot leverage multi-core CPUs

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Threading Model: One-to-One (1:1)

▪ Each user-level thread

maps to a kernel thread

▪ Most popular

▪ Windows XP/7/10,

OS/2, Linux, Solaris 9+

k

user thread

kernel thread

k kk

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Threading Model: Many-to-One (N:1)

▪ Many user-level threads mapped

to a single kernel thread

▪ Used on systems that do not

support kernel-level threads

▪ Solaris Green Threads,

GNU Portable Threads

k

user thread

kernel thread

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Threading Model: Many-to-Many (M:N)

▪ Allows many user-level

threads to be mapped to

many kernel threads

▪ Allows the OS to create

a sufficient number of

kernel threads

▪ Solaris prior to v9,

IRIX, HP-UX, Tru64

k

user thread

kernel thread

k k

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

Linux Thread Implementation

▪ In Linux, the basic unit is a “task”
• In a program that only calls fork() and/or exec(), a task is identical to a process

▪ One-to-one model
• Linux creates a task for each application thread using clone() system call

▪ Linux threads: separate tasks that may share one or more resources
• Resources can be shared selectively in clone()

• CLONE_VM, CLONE_FS, CLONE_FILES, CLONE_SIGHAND, etc.

▪ POSIX threads: a single process that contains one or more threads
• CPU registers, user stack, and blocked signal mask are specific to a thread, while all

other resources are global to a process

▪ Former POSIX compatibility problems: signal handling, exit(), exec(),
…

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

Summary: OS Classification

One Many

One
MS/DOS

Early Macintosh
Traditional UNIX

Xv6

Many
Many embedded

OSes
(VxWorks, uClinux, ..)

Mach, OS/2, Linux,
Windows, Mac OS X,

Solaris, HP-UX

o

f
ad

d
r

sp
ac

e
s:

threads per
addr space:

	슬라이드 1: Threads
	슬라이드 2: Concurrency
	슬라이드 3: Motivation
	슬라이드 4: What is a Thread?
	슬라이드 5: Using Threads
	슬라이드 6: Address Space with Threads
	슬라이드 7: Processes vs. Threads
	슬라이드 8: Benefits of Multi-threading
	슬라이드 9: Threads Interface
	슬라이드 10: Pthreads: Thread Creation / Termination
	슬라이드 11: Pthreads: Mutexes
	슬라이드 12: Pthreads: Condition Variables
	슬라이드 13: Threading Issue: fork() / exec()
	슬라이드 14: Threading Issue: Thread Cancellation
	슬라이드 15: Threading Issue: Signal Handling
	슬라이드 16: Threading Issue: Libraries
	슬라이드 17: Implementing Threads
	슬라이드 18: Kernel-level Threads
	슬라이드 19: Kernel-level Threads: Limitations
	슬라이드 20: User-level Threads
	슬라이드 21: User-level Threads: Limitations
	슬라이드 22: Threading Model: One-to-One (1:1)
	슬라이드 23: Threading Model: Many-to-One (N:1)
	슬라이드 24: Threading Model: Many-to-Many (M:N)
	슬라이드 25: Linux Thread Implementation
	슬라이드 26: Summary: OS Classification

