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Swapping

▪ Support processes when not enough physical memory

• User program should be independent of the amount of physical memory

• Single process with very large address space

• Multiple processes with combined address spaces

▪ Consider physical memory as a _______ for disks

• Leverage locality of reference within processes

• Process only uses small amount of address space at a moment

• Only small amount of address space must be resident in physical memory

• Store the rest of them to disk
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Memory Hierarchy

▪ Each layer acts as “backing store” for layer above
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Main memory

Disk storage

capacity
speed

cost

Registers
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How to Swap

▪ _________ 

• Programmers manually move pieces of code or data in and out of memory as they 

were needed

• No special support needed from OS

▪ Process-level swapping

• A process is swapped temporarily out of memory to a backing store

• It’s brought back into memory later for continued execution

▪ Page-level swapping

• Swap pages out of memory to a backing store (swap-out or page-out)

• Swap pages into memory from the backing store (swap-in or page-in)
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Where to Swap

▪ Swap space

• Disk space reserved for moving pages back and forth

• The size of the swap space determines the maximum number of memory pages 

that can be in use

• Block size is same as the page size

• Can be a dedicated partition or a file in the file system
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When to Swap

▪ Proactively based on thresholds

• OS wants to keep a small portion of memory free

• Two threshold values:  HW (high watermark) and LW (low watermark)

• A background thread called swap daemon (or page daemon) is responsible for 

freeing memory (e.g., kswapd in Linux)

• If (# free pages < LW), the swap daemon starts to evict pages from physical 

memory

• If (# free pages > HW), the swap daemon goes to sleep

• What if the allocation speed is faster than reclamation speed?
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What to Swap

▪ What happens to each type of page frame on low memory?

• Kernel code

• Kernel data

• Page tables for user processes

• Kernel stack for user processes

• User code pages

• User data pages

• User heap/stack pages

• Files mmap’ed to user processes

• Page cache pages

▪ Page replacement policy chooses the pages to evict
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Page Replacement

▪ Which page in physical memory should be selected as a victim?

• Write out the victim page to disk if modified (dirty bit set)

• If the victim page is clean, just discard

– The original version is either in the file system or in the swap space

• Why not use direct-mapped or set-associative design similar to CPU caches?

▪ Goal: minimize the page fault rate (miss rate)

• The miss penalty (cost of disk access) is so high (> x100,000)

• A tiny miss rate quickly dominates the overall AMAT (Average Memory Access 

Time)
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OPT (or MIN)

▪ Belady’s optimal replacement policy (1966)

• Replace the page that will not be used for the longest time in the future

• Shows the lowest fault rate for any page reference stream

• Problem: have to predict the future

• Not practical, but good for comparison
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FIFO

▪ First-In First-Out

• Replace the page that has been in memory the longest

• Why might this be good?

– Maybe, the one brought in the longest ago is not being used

• Why might this be bad?

– Maybe, it’s not the case

– Some pages may always be needed

• Obvious and simple to implement

• Fair: all pages receive equal residency

• FIFO suffers from “Belady’s anomaly”

– The fault rate might increase when the algorithm is given more memory
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FIFO: Belady’s Anomaly
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LRU

▪ Least Recently Used

• Replace the page that has not been used for the longest time in the past

• Use past to predict the future

– cf.  OPT wants to look at the future

• With locality, LRU approximates OPT

• “Stack” algorithm: does not suffer from Belady’s anomaly

• Harder to implement: must track which pages have been accessed

• Does not consider the frequency of page accesses

• Does not handle all workloads well
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Stack Property

▪ Stack algorithms

• Policies that guarantee increasing memory size does not increase the number of 

page faults (e.g., OPT, LRU, etc.)

• Any page in memory with m frames is also in memory with m+1 frames
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RANDOM

▪ Another simple policy

• Simply picks a random page to replace under memory pressure

• Simple to implement: no bookkeeping needed

• Performance depends on the luck of the draw

• Outperforms FIFO and LRU for certain workloads
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Comparisons

The 80-20 Workload
The Looping Workload

(50 blocks)
The Random Workload

?
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Implementing LRU

▪ Software approach

• OS maintains ordered list of page frames by reference time

• When page is referenced: move page to the front of the list

• When need victim: pick the page in the back of the list

• Slow on memory reference, fast on replacement

▪ Hardware approach

• Associate timestamp register with each page frame

• When page is referenced: store system clock in register

• When need victim: scan through registers to find oldest clock

• Fast on memory reference, slow on replacement (especially as the size of memory 

grows)



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

CLOCK

▪ An LRU approximation algorithm

• Uses R (Reference) bit in each PTE

• Arranges all of physical page frames in a big circle

• A clock hand is used to select a victim

– When a page fault occurs, the page the

hand is pointing to is inspected

– If (R == 1), turn it off and

go to next page (second chance)

– If (R == 0), evict the page

– Arm moves quickly when pages are

needed

• If memory is large, “accuracy” of

information degrades



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Clock Extensions

▪ Clustering: Replace multiple pages at once

• Expensive to run replacement algorithm 

• A single large write is more efficient than many small ones

▪ Use M (modify) bit to give preference to dirty pages

• More expensive to replace dirty pages

• Replace pages that have R bit and M bit cleared

▪ Add software counter for each page frame

• Better ability to differentiate across pages 

• Increment software counter if R bit is 0

• Smaller counter value means the page accessed more recently

• Replace pages when counter exceeds some specified limit

Class 1
R=0, M=1

Class 3
R=1, M=1

Class 2
R=1, M=0

Class 0
R=0, M=0

Read

Write

interrupt

Read

Write

interrupt

Read
Write

interrupt
Read
Write

interrupt
Paged-in



4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Physical Memory Allocation Polices

▪ Fixed-space allocation policy

• Each process is given a limit of page frames it can use

• When it reaches its limit, it replaces from its own page frames

• Local replacement: some processes may do well, others suffer

▪ Variable-space allocation policy

• Processes’ set of pages grows and shrinks dynamically

• Global replacement: one process can ruin it for the rest

• Used in Linux
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Thrashing

▪ What happens when physical memory is not enough to hold all the 

“working sets” of processes

• Working set: a set of pages that a process is using actively

• Most of the time is spent by an OS paging data back and forth from disk

• Possible solutions: 

– Kill processes

– Buy more memory

▪ Android’s LMK 

(Low Memory Killer)
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Summary

▪ VM mechanisms

• Physical and virtual addressing

• Partitioning, segmentation, paging

• Page table management, TLBs, etc.

▪ VM policies

• Page replacement policy, page allocation policy

▪ VM optimizations

• Demand paging, copy-on-write (space)

• Multi-level page tables (space)

• Efficient translation using TLBs (time)

• Page replacement policy (time)
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