Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2024

Swapping

Swapping

= Support processes when not enough physical memory
* User program should be independent of the amount of physical memory
* Single process with very large address space
* Multiple processes with combined address spaces

* Consider physical memory as a for disks

* Leverage locality of reference within processes

* Process only uses small amount of address space at a moment
* Only small amount of address space must be resident in physical memory

e Store the rest of them to disk

Memory Hierarchy

* Each layer acts as “backing store” for layer above

capacity

y N
/Régiste \r“s\

Cache

Main memory

Disk storage

speed

cost

How to Swap

* Programmers manually move pieces of code or data in and out of memory as they
were needed

* No special support needed from OS

" Process-level swapping
* A process is swapped temporarily out of memory to a backing store

* It’s brought back into memory later for continued execution

= Page-level swapping
* Swap pages out of memory to a backing store (swap-out or page-out)
* Swap pages into memory from the backing store (swap-in or page-in)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Where to Swap

= Swap space

* Disk space reserved for moving pages back and forth

The size of the swap space determines the maximum number of memory pages
that can be in use

Block size is same as the page size

Can be a dedicated partition or a file in the file system

PFNO PFN1 PFN2 PFN3

Physical | pbo | PD1 | PID1 | PID2
Memory | (VPNO) | (VPN1) | (vPN2) | (vPNO)
BlkO Blkl1 Blk2 Blk3 Blk4 Blk5 Blkée Blk?7
Swap | pipo | PIDO c PD1 | PID1 | PD3 | PID2 | PID3
Space | (VPN1) | (vPN2) r¢€ 1 (veNoO) | (VPN 1) | (VPNO) | (VPN 1) | (VPN 1)

When to Swap

" Proactively based on thresholds
* OS wants to keep a small portion of memory free
* Two threshold values: HW (high watermark) and W (low watermark)

* A background thread called swap daemon (or page daemon) is responsible for
freeing memory (e.g., kswapd in Linux)

* If (# free pages < LW), the swap daemon starts to evict pages from physical
memory

* If (# free pages > HW), the swap daemon goes to sleep

* What if the allocation speed is faster than reclamation speed!?

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

What to Swap

* What happens to each type of page frame on low memory!?

 Kernel code — Not swapped
* Kernel data —

* Page tables for user processes — Not swapped
* Kernel stack for user processes — 7

* User code pages — Dropped

* User data pages — ??

* User heap/stack pages — Swapped

* Files mmap’ed to user processes — ??
* Page cache pages — Dropped or go to file system

= Page replacement policy chooses the pages to evict

Page Replacement

" Which page in physical memory should be selected as a victim?
* Write out the victim page to disk if modified (dirty bit set)

* If the victim page is clean, just discard

— The original version is either in the file system or in the swap space

* Why not use direct-mapped or set-associative design similar to CPU caches?

" Goal: minimize the page fault rate (miss rate)
* The miss penalty (cost of disk access) is so high (> x100,000)

* A tiny miss rate quickly dominates the overall AMAT (Average Memory Access
Time)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

OPT (or MIN)

= Belady’s optimal replacement policy (1966)

Replace the page that will not be used for the longest time in the future

Shows the lowest fault rate for any page reference stream

Problem: have to predict the future

Not practical, but good for comparison

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 1 1 3 3 3

PF rate
=7/12 2 2 2 2 2 2 2 2 2 4 4
5 5 5

3 4 4 4 5 5 5

Miss Miss Miss Miss Hit Hit Miss Hit Hit Miss Miss Hit

FIFO

" First-In First-Out

Replace the page that has been in memory the longest
Why might this be good!?
— Maybe, the one brought in the longest ago is not being used

Why might this be bad!?

— Maybe, it’s not the case

— Some pages may always be needed

Obvious and simple to implement

Fair: all pages receive equal residency

FIFO suffers from “Belady’s anomaly”

— The fault rate might increase when the algorithm is given more memory

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

10

FIFO: Belady’s Anomaly

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 4 4 4 5 5 5 5 5 5

PF rate
=9/12 2 2 2 1 1 1 1 1 3 3 3
3 3 3 2 2 2 2 2 4 4

Miss Miss Miss Miss Miss Miss Miss Hit Hit Miss Miss Hit

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 5 5 5 5 4 4

PF rate
=10/12 2 2 2 2 2 2 1 1 1 1 5
3 3 3 3 3 3 2 2 2 2
4 4 4 4 4 4 3 3 3

Miss Miss Miss Miss Hit Hit Miss Miss Miss Miss Miss Miss

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

LRU

* | east Recently Used

* Replace the page that has not been used for the longest time in the past

* Use past to predict the future
— cf. OPT wants to look at the future

With locality, LRU approximates OPT
“Stack” algorithm: does not suffer from Belady’s anomaly

Harder to implement: must track which pages have been accessed
* Does not consider the frequency of page accesses

Does not handle all workloads well

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

12

Stack Property

= Stack algorithms

* Policies that guarantee increasing memory size does not increase the number of
page faults (e.g., OPT, LRU, etc.)

* Any page in memory with m frames is also in memory with m+/ frames

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
Stack distance: oo oo oo oo 4 4 oo 3 3 5 5 5
1 2 3 4 1 2 5 1 2 3 4 5

PF rate
=10/12 1 2 3 4 1 2 5 1 2 3 4
1 2 3 4 1 2 5 1 2 3
1 2 3 4 4 4 5 1 2

3 3 3 4 5 1
Miss Miss Miss Miss Miss Miss Miss Hit Hit Miss Miss Miss

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

RANDOM

* Another simple policy

* Simply picks a random page to replace under memory pressure

* Simple to implement: no bookkeeping needed

* Performance depends on the luck of the draw

* Outperforms FIFO and LRU for certain workloads

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1 1 5

F ’;’/";3 2 |2||2||2||2||2||2||2||3]||3]|3
3 4 q q 5 5 5 5 4 4
Miss Miss Miss Miss Hit Hit Miss Hit Hit Miss Miss Miss

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

14

Hit Rate

100%

80% 1

60%

Comparisons

40% 1

20% 1

The 80-20 Workload

OPT

LRU
X FIFO
— RAND

100

20 40 60 80
Cache Size (Blocks)

Hit Rate

100% 1

80%

60% -

400/0 N

200/0 7

0% -

The Looping Workload
(50 blocks)

20

OPT
LRU
X FIFO

— RAND

40 60
Cache Size (Blocks)

80 100

Hit Rate

100% -

80%

60% -

40cy° 7

20% A

0%

The Random Workload

OPT

LRU
X FIFO
— RAND

20 40 60 80
Cache Size (Blocks)

15

Implementing LRU

= Software approach
* OS maintains ordered list of page frames by reference time
* When page is referenced: move page to the front of the list
* When need victim: pick the page in the back of the list

* Slow on memory reference, fast on replacement

* Hardware approach
* Associate timestamp register with each page frame
* When page is referenced: store system clock in register
* When need victim: scan through registers to find oldest clock

* Fast on memory reference, slow on replacement (especially as the size of memory
grows)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

CLOCK

= An LRU approximation algorithm
* Uses R (Reference) bit in each PTE

* Arranges all of physical page frames in a big circle

* A clock hand is used to select a victim
— When a page fault occurs, the page the
hand is pointing to is inspected
— If (R == 1), turn it off and
go to next page (second chance)
— If (R == 0), evict the page
— Arm moves quickly when pages are
needed
* If memory is large,“accuracy” of

information degrades

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

17

Clock Extensions

= Clustering: Replace multiple pages at once
* Expensive to run replacement algorithm

* A single large write is more efficient than many small ones

* Use M (modify) bit to give preference to dirty pages

Paged-in

* More expensive to replace dirty pages interrupt o
* Replace pages that have R bit and M bit cleared

" Add software counter for each page frame rex

* Better ability to differentiate across pages
* Increment software counter if R bit is 0
* Smaller counter value means the page accessed more recently

* Replace pages when counter exceeds some specified limit

18

Physical Memory Allocation Polices

* Fixed-space allocation policy
* Each process is given a limit of page frames it can use
* When it reaches its limit, it replaces from its own page frames

* Local replacement: some processes may do well, others suffer

" Variable-space allocation policy
* Processes’ set of pages grows and shrinks dynamically
* Global replacement: one process can ruin it for the rest

e Used in Linux

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

19

Thrashing

" What happens when physical memory is not enough to hold all the

“working sets” of processes

* Working set: a set of pages that a process is using actively
* Most of the time is spent by an OS paging data back and forth from disk

* Possible solutions: A
— Kill processes

— Buy more memory |
' thrashing

* Android’s LMK
(Low Memory Killer)

CPU utilization

degree of multiprogramming

Summary

"= VM mechanisms

* Physical and virtual addressing

* Partitioning, segmentation, paging

* Page table management, TLBs, etc.
* VM policies

* Page replacement policy, page allocation policy
" VM optimizations

* Demand paging, copy-on-write (space)

* Multi-level page tables (space)

* Efficient translation using TLBs (time)
* Page replacement policy (time)

4190.307: Operating Systems | Fall 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

21

	슬라이드 1: Swapping
	슬라이드 2: Swapping
	슬라이드 3: Memory Hierarchy
	슬라이드 4: How to Swap
	슬라이드 5: Where to Swap
	슬라이드 6: When to Swap
	슬라이드 7: What to Swap
	슬라이드 8: Page Replacement
	슬라이드 9: OPT (or MIN)
	슬라이드 10: FIFO
	슬라이드 11: FIFO: Belady’s Anomaly
	슬라이드 12: LRU
	슬라이드 13: Stack Property
	슬라이드 14: RANDOM
	슬라이드 15: Comparisons
	슬라이드 16: Implementing LRU
	슬라이드 17: CLOCK
	슬라이드 18: Clock Extensions
	슬라이드 19: Physical Memory Allocation Polices
	슬라이드 20: Thrashing
	슬라이드 21: Summary

