
Project #4: KSM
(Kernel Samepage Merging)

Hyungjoon Kwon

Systems Software &

Architecture Lab.

Seoul National University

2024.05.10

2

§ KSM (Kernel Same page Merging) is a memory de-duplication feature
that enables the kernel to consolidate identical memory pages into a
single shared page across multiple processes.

§ Merged pages are write-protected, therefore attempts to modify the
merged page would cause a page fault.

§ A modification to a merged page results in a copy-on-write action, thus
preserving the integrity of the original shared page.

3

§ Process 1
• VPN(A) à PFN (B)

§ Process 2
• VPN(C) à PFN (D)

§ PFN (B) and PFN (D) has same
contents

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D

4

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D
KSM Metadata
- Detecting duplicate frames
- Manage when to free Physical frames
- …

ksmd (KSM Daemon)

KSM Metadata

5

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D

(1) ksmd Scans Process 1

6

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D

(1) ksmd Scans Process 1
(2) Hash PFN B

0xa21421…34

7

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta

0xa21421…34

8

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta

0xa21421…34

9

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2

0xa21421…34

10

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2
(6) Hash PFN D

0xa21421…34

0xa21421…34

11

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2
(6) Hash PFN D
(7) Lookup KSM Meta

0xa21421…34

0xa21421…34

12

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

DVPN: C

PFN: B

PFN: D

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2
(6) Hash PFN D
(7) Lookup KSM Meta
(8) Found!, update KSM Meta0xa21421…34

0xa21421…34

13

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

“os is so fun”

Process 2
Page Table

D BVPN: C

PFN: B

PFN: D

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2
(6) Hash PFN D
(7) Lookup KSM Meta
(8) Found!, update KSM Meta
(9) Merge D and B

0xa21421…34

14

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

Process 2
Page Table

BVPN: C

PFN: B

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2
(6) Hash PFN D
(7) Lookup KSM Meta
(8) Found!, update KSM Meta
(9) Merge D and B
(10) Reclaim Frame D

0xa21421…34

15

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

Process 2
Page Table

BVPN: C

PFN: B

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2
(6) Hash PFN D
(7) Lookup KSM Meta
(8) Found!, update KSM Meta
(9) Merge D and B
(10) Reclaim Frame D
(11) Clear Write Bit of PTEs0xa21421…34

16

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B

Physical
Frame

“os is so fun”

VPN: A

Process 2
Page Table

BVPN: C

PFN: B

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2
(6) Hash PFN D
(7) Lookup KSM Meta
(8) Found!, update KSM Meta
(9) Merge D and B
(10) Reclaim Frame D
(11) Clear Write Bit of PTEs
(12) Process 1 writes to VPN: A

0xa21421…34

17

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

B E

Physical
Frame

“os is so fun”

VPN: A

Process 2
Page Table

BVPN: C

PFN: E

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2
(6) Hash PFN D
(7) Lookup KSM Meta
(8) Found!, update KSM Meta
(9) Merge D and B
(10) Reclaim Frame D
(11) Clear Write Bit of PTEs
(12) Process 1 writes to VPN: A
(13) Page Fault + Copy on Write

0xa21421…34

“os is so fun”
“os is love”

PFN: B

18

ksmd (KSM Daemon)

KSM Metadata

Process 1
Page Table

E

Physical
Frame

“os is so fun”

VPN: A

Process 2
Page Table

BVPN: C

PFN: E

(1) ksmd Scans Process 1
(2) Hash PFN B
(3) Lookup KSM Meta
(4) Not found, update KSM Meta
(5) ksmd Scans Process 2
(6) Hash PFN D
(7) Lookup KSM Meta
(8) Found!, update KSM Meta
(9) Merge D and B
(10) Reclaim Frame D
(11) Clear Write Bit of PTEs
(12) Process 1 writes to VPN: A
(13) Page Fault + Copy on Write
(14) Update KSM Metadata

0xa21421…34

“os is love”

PFN: B

19

§ Your task is to implement a new system call named ksm()
§ d
• scanned: Total number of scanned frames
• merged: Total number of merged frames
• return value: Total number of free frames (‘freemmem’)

§ System call number is assigned to 24 (already done in branch pa4)
§ The initial free memory could differ due to implementation details.

20

§ Scan the page frames used by each user process p from the virtual address 0 to p->sz. The region
will contain code, data, heap, and stack (+ stack guard) pages. Exclude trampoline, trapframe, kernel
stack, and page table pages from scanning as they are not targets for KSM.

§ You can assume that a single physical frame can be shared by up to 16 different virtual pages, except
for the zero-page. There is no limit on the number of virtual pages that can share the zero-page.

§ When performing ksm(), exclude the page frames used by init process (pid 1), the sh process (pid 2),
and the process invoking the ksm() system call itself from scanning. Assume that the shell process
always runs with pid 2.

§ Duplicated page frames are merged only through the ksm() system call; they should not be merged at
the time of page allocation.

§ There should be no memory leak. The freemem value should remain identical before and after
executing a program.

§ ksm3 user program should run with background ksmd running. To run a process background, run
‘ksmd &’

21

Text

Data

Guard page
User Stack

Heap

Trampoline
Trap frame

0

Page Aligned

Max VA

R-XU

RW-U

RW-U

RW-U

RX--
R-W-

0 ~ p -> sz

Single Page

Single Page

22

§ You are required to preallocate a "zero-page" in the system which is
filled with zeroes. Since BSS and heap pages are initialized to zero, those
pages can be mapped to the zero-page.

§ There is no limit on the number of virtual pages that can share the
zero-page.

23

§ ksm1

Parent (3)

Child (4)

Child (5)

Child (6)

Child (5)

Child (4)

Child (6)

*The scanned & freemem value could differ due to implementation detail

24

§ ksm1 (with debug message)

Text region

Stack region

25

§ ksm1 (with debug message)

Does nothing because it has been
merged or scanned

26

§ ksm1 (with debug message)

After fork, child 5 and 4 has the same text area

Stack may differ

27

§ There are three major flows that you should modify
• KSM flow
• Page fault flow (copy-on-write)
• Physical page release flow (process exit, exec, …)

§ Try to print as much debug message as possible
• PFN
• VPN
• Which page is merged to which
• Which page was released
• Which page performed a CoW

28

§ There are limitations in simply comparing the output of the user
programs to genuinely check if the KSM was properly implemented.

§ You should explain what you have considered, and what you have done.
§ Requirements
• Data structures
• Overall flowchart
• Algorithm design
• Implementation details
• Testing and validation

29

§ Read Chap. 3, Chap. 4 of the xv6 book to understand RISC-V’s virtual
memory subsystem and page-fault exceptions in xv6.

§ For your reference, the following roughly shows the amount of changes
you need to make for this project assignment.

§ Each “+” symbol indicates 1~10 lines of code that should be added,
deleted, or altered.

http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf

30

§ For this project assignment, you can assume a uniprocessor RISC-V system (CPUS = 1) with a
physical memory size of 128 MiB.

§ Please use the qemu version 8.2.0 or later. To determine the qemu version, use the
command: $ qemu-system-riscv64 --version

§ We will run qemu-system-riscv64 with the -icount shift=0 option, which enables aligning the host and
virtual clocks. This setting is already included in the Makefile for the pa4 branch.

§ You only need to change the files in the ./kernel directory (mostly to ksm.h and ksm.c files provided
in the skeleton code). Any other changes outside the ./kernel directory will be ignored during
grading.

31

§ Skeleton Code
• You should work on the pa4 branch of the xv6-riscv-snu repository as follows:

• The pa4 branch has a user-level utility program named ksmd, ksm1, ksm2, ksm3
which can be built from the user/ksmd.c, user/kms1.c, user/ksm2.c, user/ksm3.c file

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa4

32

§ Due
• 11:59 PM, May 26 (Sunday)

§ Submission
• Run the make submit command to generate a tarball

named xv6-pa4-{STUDENTID}.tar.gz in the xv6-riscv-snu directory
• Upload the compressed file to the submission server
• The total number of submissions for this project will be limited to 50
• Only the version marked FINAL will be considered for the project score

Using GDB with QEMU

34

§ In the xv6-riscv-snu directory,
§ Run make qemu-gdb to run QEMU
§ In another shell, run gdb-multiarch ./kernel/kernel
§ gdb-multiarch automatically sets the target architecture to “riscv:rv64”

35

§ In GDB, enter target remote :<port>

§ You can find TCP port in the QEMU log

36

§ The xv6 virtual machine has stopped at 0x1000
(the very beginning of the text section)

§ To continue, enter c in GDB

(Running)

37

§ To stop again, enter Ctrl-C in GDB
§ Then the xv6 virtual machine stops immediately

(Stopped)

38

§ Let’s set a breakpoint at exec()

§ Enter b exec in GDB

(Stopped)

39

§ Enter c in GDB to resume the xv6 machine

(Running)

40

§ Run ls command in the xv6 machine
§ Then the xv6 machine hits the breakpoint and stops right before

starting exec() function

(Stopped)

41

§ To learn GDB in detail, search for GDB on Google

§ There are many useful videos about GDB in YouTube

§ [JTJ의 리눅스탐험] GDB 활용하기

https://www.youtube.com/watch?v=qltDyFxiNzk

Thank you!

