Kyu-Jin Cho

Systems Software & Architecture Lab. Seoul National University

2024.04.15

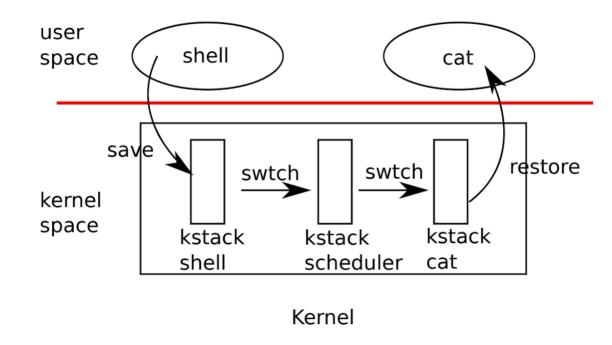
Project #3: EDF Scheduler

Reminder: Late Submission Policy

You can use up to 3 slip days during this semester

- You should explicitly declare the number of slip days you want to use on the QnA board right after each submission
- Once slip days have been used, they cannot be canceled later
- 25% of the credit will be deducted for every single day delay

XV6 Process States


- XV6 process states (in proc.h)
 - enum procstate
 {UNUSED, USED, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
- UNUSED: not used
- USED: initialized for new process
- SLEEPING: wait for I/O, wait() or sleep()
- RUNNABLE: ready to run
- RUNNING: now running
- ZOMBIE: exited and waiting for parent to call wait()

XV6 Scheduler

- XV6 multiplexes by switching each CPU from one process to another
- The XV6 scheduler implements a simple scheduling policy
 - Runs each process in turn
 - This is called Round Robin
- Each CPU calls scheduler()
- Scheduler never returns.

XV6 Scheduler

- Steps involved in switching from one user process to another
 - I. User-kernel transition to the old's process's kernel thread
 - 2. Context switch to the current CPU's scheduler thread
 - 3. Context switch to a new process's kernel thread
 - 4. Trap return to the user-level process

XV6 Code : scheduler()

- In kernel/proc.c
 - void scheduler(void)
- Scheduler loops, doing
 - I. Choose a RUNNABLE process p to run
 - 2. Mark process p's state to RUNNING
 - 3. Set the per-CPU current process
 - 4. Context switch (start running process p)
 - 5. If process is done running, go to 1.
- Scheduler never returns

```
scheduler(void)
  struct proc *p;
  struct cpu *c = mycpu();
  c \rightarrow proc = 0;
  for(;;){
    // Avoid deadlock by ensuring that devices can interrupt.
    intr_on();
    for(p = proc; p < &proc[NPROC]; p++) {</pre>
      acquire(&p->lock);
      if(p->state == RUNNABLE) {
        // Switch to chosen process. It is the process's job
        // to release its lock and then reacquire it
        // before jumping back to us.
        p->state = RUNNING;
        c \rightarrow proc = p;
        swtch(&c->context, &p->context);
        // Process is done running for now.
        // It should have changed its p->state before coming back.
        c \rightarrow proc = 0;
      release(&p->lock);
```

void

XV6 Code : sched()

- In kernel/proc.c
 - void sched(void)
- Called from exit(), sleep(), yield()
- Context switch (return to scheduler)

```
void
sched(void)
  int intena;
  struct proc *p = myproc();
  if(!holding(&p->lock))
    panic("sched p->lock");
  if(mycpu()->noff != 1)
    panic("sched locks");
  if(p->state == RUNNING)
    panic("sched running");
  if(intr_get())
    panic("sched interruptible");
  intena = mycpu()->intena;
  swtch(&p->context, &mycpu()->context);
  mycpu()->intena = intena;
```

XV6 Code : swtch()

- In kernel/swtch.S
 - void swtch(struct context *old, struct context *new)
- Save current registers in old, load from new

.globl	swtch	
swtch:		
	sd ra, 0(a0)	
	sd sp, 8(a0)	
	sd s0, 16(a0)	
	sd s1, 24(a0)	
	sd s2, 32(a0)	
	sd s3, 40(a0)	
	sd s4, 48(a0)	
	sd s4, 48(a0) sd s5, 56(a0)	
	sd s6. 64(a0)	
	sd s7, 72(a0)	
	sd s8, <mark>80(</mark> a0)	
	sd s7, 72(a0) sd s8, 80(a0) sd s9, 88(a0)	
	sd s10, 96(a0)	
	sd s11, 104(a0)	
	ld ra, 0(a1)	
	ld sp. 8(a1)	
	ld s0, 16(a1) ld s1, 24(a1) ld s2, 32(a1)	
	ld s1, 24(a1)	
	ld s2, 32(a1)	
	ld s3, 40(a1)	
	ld s4, 48(a1)	
	ld s5, 56(a1) ld s6, 64(a1)	
	ld s6, 64(a1)	
	ld s7, 72(a1)	
	ld s8. 80(a1)	
	ld s9, 88(a1)	
	ld s10, 96(a1)	
	ld s11, 104(a1)	
	rot	

Project#3: EDF Scheduler

- In this project, you have to
 - I. Implement the sched_setattr() system call (10 points)
 - 2. Implement the sched_yield() system call (20 points)
 - 3. Implement the EDF (Earliest Deadline First) scheduler (70 points)
- Due date is II:59(PM), April 28st (Sunday)

Project#3-1. Implement the sched_setattr()

- int sched_setattr(int pid, int runtime, int period)
 - Sets the EDF scheduler parameters for the process whose id is pid
 - If pid equals 0, the parameters of the calling process will be set
 - The value of parameters should be positive integer where runtime < period
 - For normal processes, these values are initialized to 0

• Return value

• 0 on success, -1 on error

Project#3-2. Implement the sched_yield()

- void sched_yield()
 - For normal processes, the system call causes the calling process to relinquish the CPU
 - For real-time processes, calling this system call means that the process has completed its execution in the current period

• In the skeleton code,

- It simply calls the yield() kernel function to schedule the next runnable process
- You need to modify the sched_yield() for real-time processes, so that the current real-time process gives up the CPU and waits until the start of its next period

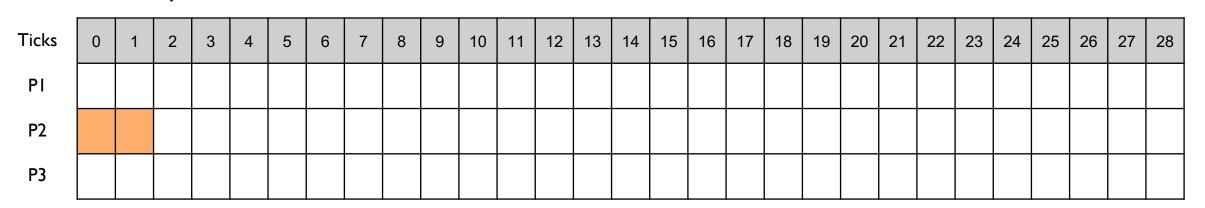
Project#3-3. Implement the EDF scheduler

- In EDF scheduling, processes are prioritized based on their deadlines
 - The process with the closest deadline is given the highest priority and is scheduled to run next
 - $P_i = (C_i, T_i)$
 - $-C_i$ is the maximum runtime that the process requires to complete under worst-case
 - $-\ T_i$ is the period of the process at which the process repeats
- In the periodic process model, deadlines are equal to periods
 - Once a process is scheduled, the execution of the process should be completed before the start of the next period

Project#3-3. Implement the EDF scheduler

- Add the EDF scheduler on top of the default round-robin scheduler
 - Real-time processes always have a higher priority than normal processes
 - Normal processes are scheduled only when there are no runnable real-time processes
- If more than one real-time process has the same deadline
 - I. Select the current process if it is among them
 - 2. If not, assign the CPU to the process with the smallest pid

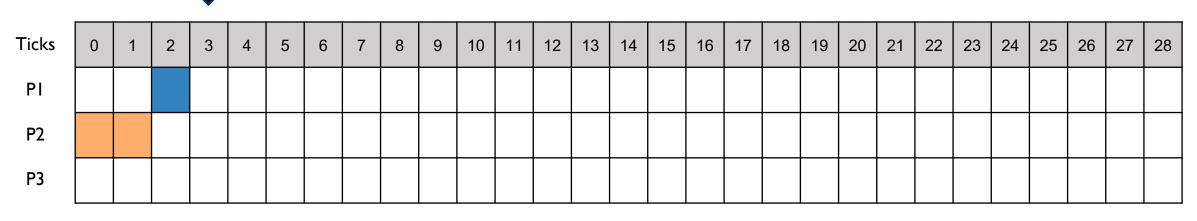
Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)



Ticks	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
ΡI																													
P2																													
Р3																													

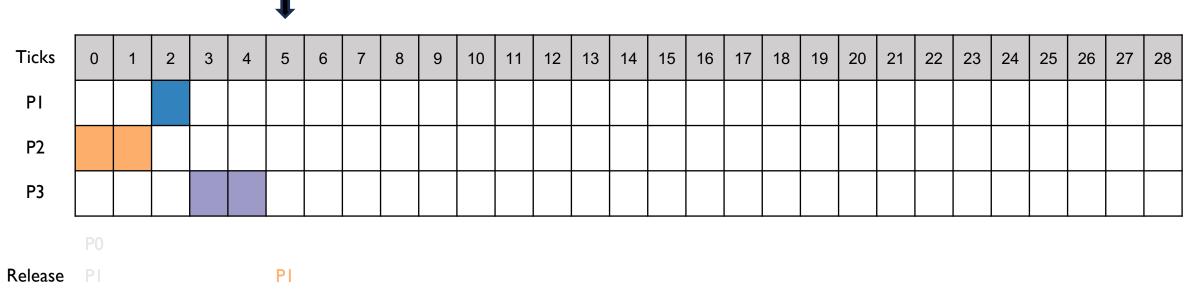
P0

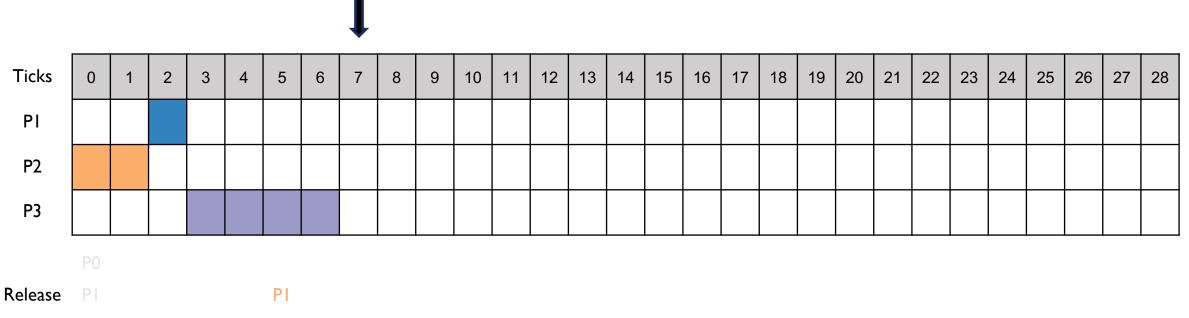
Release PI


Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

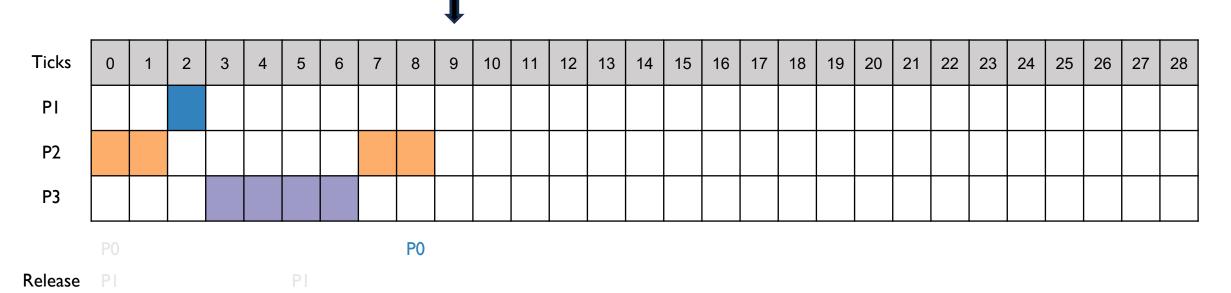
P0

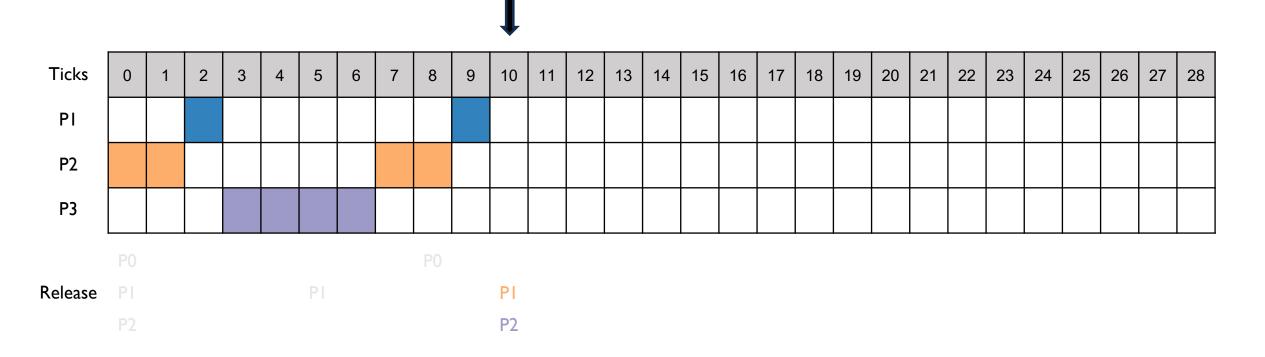
Release

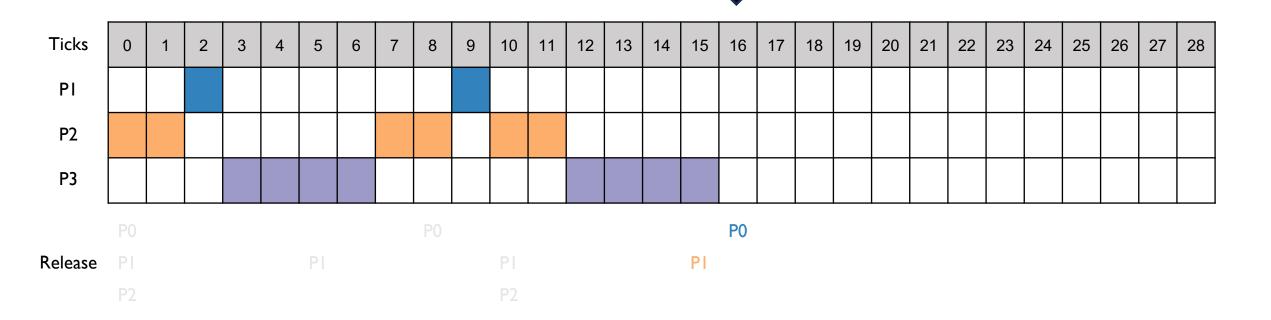

Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

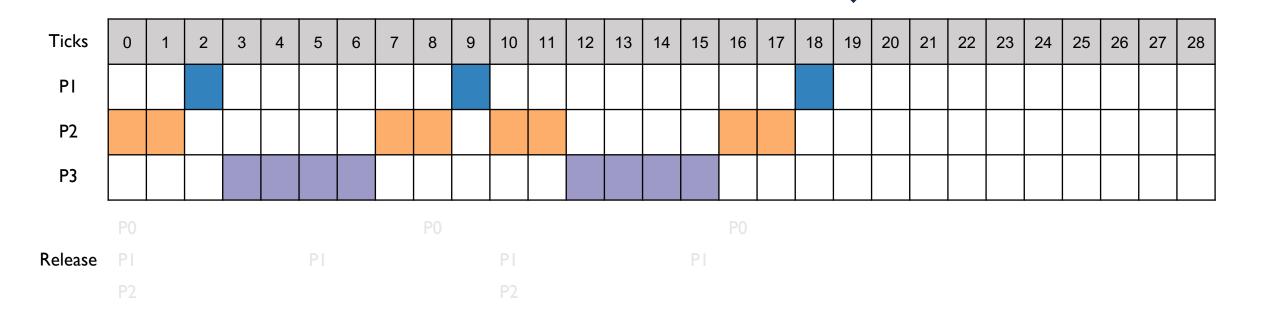

P0

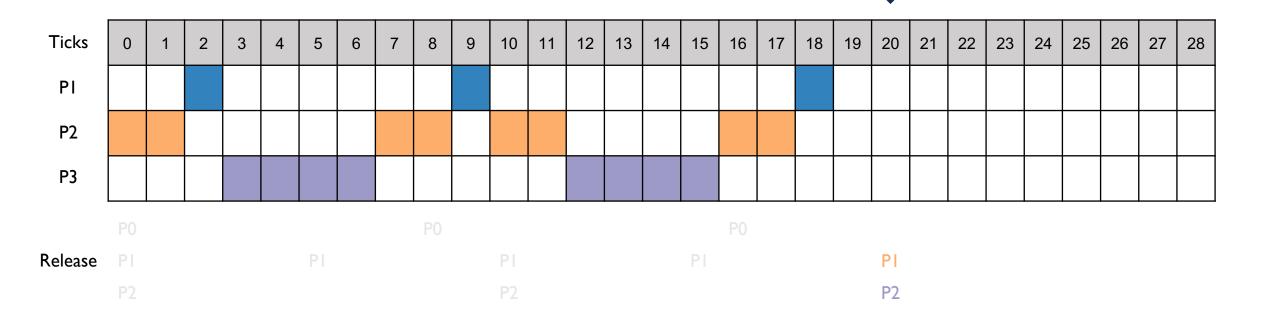
Release

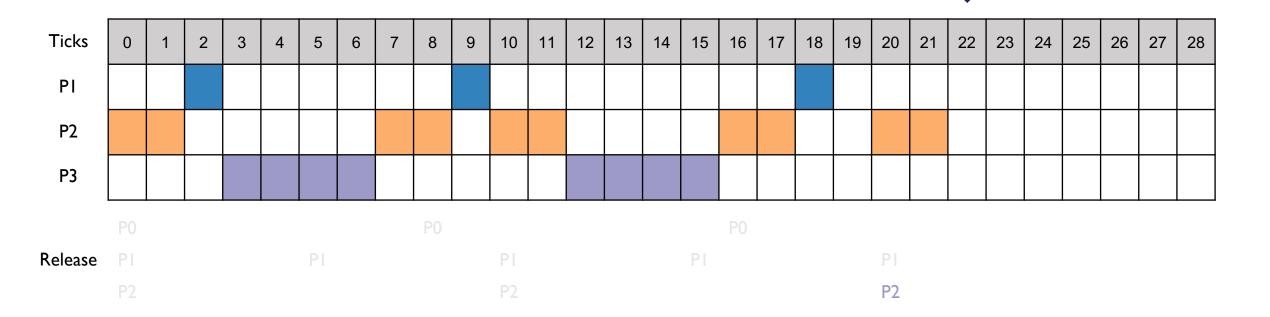

Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

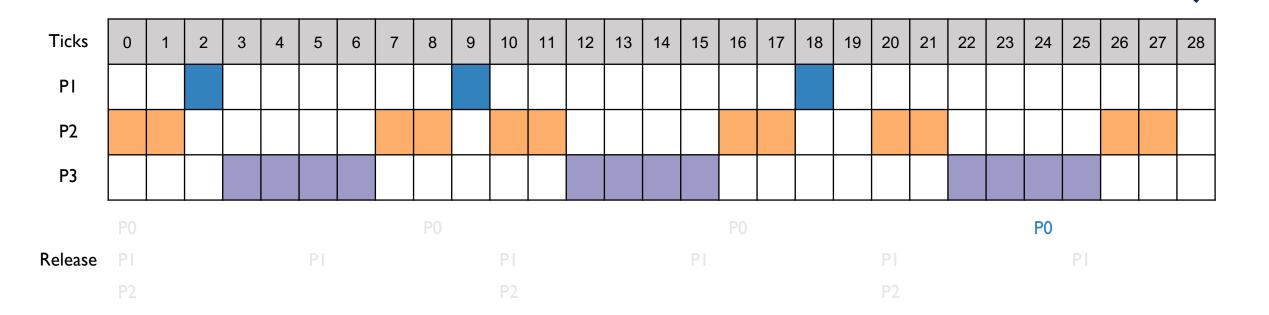



Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)




Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)





Skeleton Code

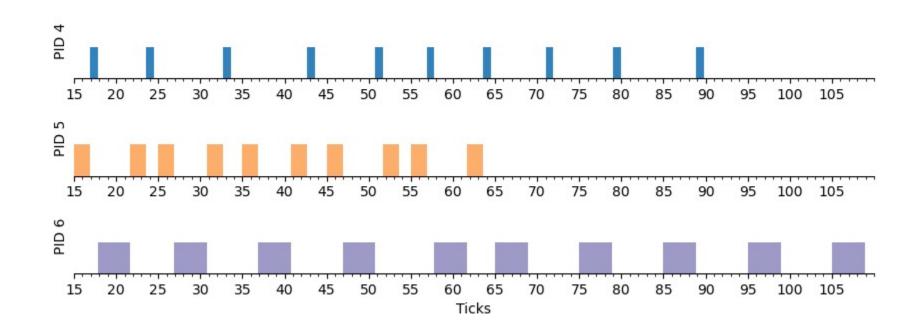
- You should work on the pa3 branch as follows:
 - \$ git clone https://github.com/snu-csl/xv6-riscv-snu
 - \$ cd xv6-riscv-snu
 - \$ git checkout pa3
- Then, you have to set your STUDENTID in the Makefile
- Also, you should install python matplotlib packages.
 - \$ sudo apt install python3-matplotlib

Skeleton Code

- The pa3 branch includes two user-level programs, "task1" and "task2"
 - The first column shows the current time as measured by the time() system call
 - Time is displayed in units of 0.1 tick (E.g. a value of 110 corresponds to 11.0 ticks)
 - The second column represents the PID of the process

xv6 kernel is booting	
init: starting sh	
\$ task l	
110 4 starts	
118 4 ends	
118 5 starts	
120 4 starts	

Note that the initial tick number may vary depending on when you execute the program


Drawing Scheduling Graph

- We provide you with a Python script called graph.py
- You can use this Python script to convert the above xv6 output into a graph image

```
$ make gemu-log
gemu-system-riscv64 -machine virt ... | tee xv6.log
xv6 kernel is booting
init: starting sh
$ task2
                        <--- Run the task2 program
110 4 starts
118 4 ends
QEMU: Terminated <--- Quit gemu using ^a-x
*** The output of xv6 is logged in the 'xv6.log' file.
             <--- Generate the graph. (this should be done on Ubuntu, not on xv6)</p>
$ make png
./graph.py xv6.log graph.png
```

Drawing Scheduling Graph

• If everything goes fine, you will get the following graph:

Restrictions

- The number of CPUs is already set to 1 in the Makefile
- You can assume that
 - The actual execution time of a real-time process is always less than its worstcase runtime
 - Real-time processes perform no I/O operations
- The implementation of the EDF scheduler should not affect the functionality of the default round-robin scheduler
- You only need to modify those files in the ./kernel directory
 - Changes to other source code will be ignored during grading.
- Please remove all the debugging outputs before you submit

Tips

You may want to consult:

- kernel/proc.{c, h}
 - Process related function handling
- kernel/sysproc.c
 - Several system call implementations
- kernel/trap.c
 - Trap handling
- And other files if necessary

Submission

- Perform the make submit command to generate a compressed tar file
- Upload this tar file to the submission server
- The total number of submissions will be limited to 30
- Only the version marked FINAL will be considered
- It takes a long time to grading, so please wait for a few minutes

Thank you!