Kyu-Jin Cho

Systems Software &

frameewre 2> Project #3: EDF Scheduler

Seoul National University

2024.04.15

Reminder: Late Submission Policy

You can use up to 3 slip days during this semester

* You should explicitly declare the number of slip days you want to use
on the QnA board right after each submission

= Once slip days have been used, they cannot be canceled later

* 25% of the credit will be deducted for every single day delay

XV6 Process States

= XV6 process states (in proc.h)

* enum procstate
{UNUSED, USED, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

= UNUSED: not used

= USED: initialized for new process

= SLEEPING: wait for I/O, wait() or sleep()
= RUNNABLE: ready to run

= RUNNING: now running

= ZOMBIE: exited and waiting for parent to call wait()

XV6 Scheduler

= XV6 multiplexes by switching each CPU from one process to another

= The XV6 scheduler implements a simple scheduling policy

* Runs each process in turn
* This is called Round Robin

= Each CPU calls scheduler()

» Scheduler never returns.

XV6 Scheduler

= Steps involved in switching from one user process to another

|. User-kernel transition to the old’s process’s kernel thread
2. Context switch to the current CPU’s scheduler thread

3. Context switch to a new process’s kernel thread

- Coy

4. Trap return to the user-level process

user

space
save
swtch swtch rgstore
kernel >
Space kstack kstack kstack

shell

scheduler cat

Kernel

XV6 Code : scheduler()

void

= |n kernel/proc.c SECCRE D
struct proc *p,;
* void scheduler(void) struct cpu xc = mycpuO;
. C->pI.‘C.)C = H
= Scheduler loops, doing 7 ot d
intr_on();
* |. Choose a RUNNABLE process p to run (5 = proc; p < SprocHPROC]; po0 |
. acquire(&p—->lock);
* 2. Mark process p’s state to RUNNING (p-ostate == RUNNABLE) {
* 3. Set the per-CPU current process pefore junping bach
p—>state_= BUNNING;
* 4. Context switch (start running process p) R)
* 5. If process is done running, go to |. M
C—>proc = ’
= Scheduler never returns o)

XV6 Code : sched()

* In kernel/proc.c L.
schealvolc
* void sched(void) I

struct proc *p = myproc();

(!'holding(&p—>lock))

= Called from exit(), sleep(), yield() panic();
Cmycpu()—>noff != 1)
panic();
(p—>state == RUNNING)
. ic();
= Context switch (return to scheduler) Cintr_get())

panic();

intena = mycpu()->intena;
swtch(&p->context, &mycpu()->context);
mycpu()->intena = intena;

}

XV6 Code : swtch()

* |In kernel/swtch.S

* void swtch(struct context *old, struct context *new)

NN TENTENEN TN TENTEN NS
NNV

= Save current registers in old, load from new

(
(
(
(
(
(
(
(
(
(

AN NN

Project#3: EDF Scheduler

= In this project, you have to

|. Implement the sched setattr() system call (10 points)
2. Implement the sched yield() system call (20 points)
3. Implement the EDF (Earliest Deadline First) scheduler (70 points)

. Due date is | 1:59(PM), April 285 (Sunday)

Project#3-1. Implement the sched_setattr()

* int sched_setattr(int pid, int runtime, int period)
* Sets the EDF scheduler parameters for the process whose id is pid
* If pid equals O, the parameters of the calling process will be set
* The value of parameters should be positive integer where runtime < period

* For normal processes, these values are initialized to 0

e Return value

0 on success, -1 on error

10

Project#3-2. Implement the sched_yield()

= void sched yield()

* For normal processes, the system call causes the calling process to relinquish the
CPU

* For real-time processes, calling this system call means that the process has
completed its execution in the current period

* In the skeleton code,
* It simply calls the yield() kernel function to schedule the next runnable process

* You need to modify the sched yield() for real-time processes, so that the current
real-time process gives up the CPU and waits until the start of its next period

11

Project#3-3. Implement the EDF scheduler

= In EDF scheduling, processes are prioritized based on their deadlines

* The process with the closest deadline is given the highest priority and is scheduled to
run next

* B = (G, Ty)
— (C; is the maximum runtime that the process requires to complete under worst-case
— T; is the period of the process at which the process repeats

= In the periodic process model, deadlines are equal to periods

* Once a process is scheduled, the execution of the process should be completed
before the start of the next period

12

Project#3-3. Implement the EDF scheduler

= Add the EDF scheduler on top of the default round-robin scheduler

* Real-time processes always have a higher priority than normal processes
* Normal processes are scheduled only when there are no runnable real-time processes

* |f more than one real-time process has the same deadline
|. Select the current process if it is among them
2. If not, assign the CPU to the process with the smallest pid

13

EDF Example

= Scheduling 3 processes, PO = (I, 8),

= (2, 5) and

= (4, 10)

Ticks 0|1 21 3|4 |5]|6/|7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Pl

P2

P3

PO

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8),

= (2, 5) and

= (4, 10)

Ticks 0|1 21 3|4 |5]|6/|7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Pl

P2

P3

PO

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8), "' =(2,5) and P2 = (4, 10)

Ticks 0 1 2113|4567 (8|9 |10|11]112|13 (14 (15 (16|17 |18 |19 |20 |21 |22 |23 | 24
Pl

P2

P3

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8), "' =(2,5) and P2 = (4, 10)

Ticks 0 1 2113|4567 (8|9 |10|11]112|13 (14 (15 (16|17 |18 |19 |20 |21 |22 |23 | 24
Pl

P2

P3

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8), "' =(2,5) and P2 = (4, 10)

Ticks 0 1 2113|4567 (8|9 |10|11]112|13 (14 (15 (16|17 |18 |19 |20 |21 |22 |23 | 24
Pl

P2

P3

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8), "' =(2,5) and P2 = (4, 10)

Ticks 0 1 2113|4567 (8|9 |10|11]112|13 (14 (15 (16|17 |18 |19 |20 |21 |22 |23 | 24
Pl

P2

P3

PO

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8), "' =(2,5) and P2 = (4, 10)

!

Ticks 0 1 2113|4567 (8|9 |10|11]112|13 (14 (15 (16|17 |18 |19 |20 |21 |22 |23 | 24
Pl

P2

P3

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8), " =(2,5) and P2 = (4, 10)

Ticks 0 1 2113|4567 (8|9 |10|11]112|13 (14 (15 (16|17 |18 |19 |20 |21 |22 |23 | 24
Pl

P2

P3

PO

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8), " =(2,5) and P2 = (4, 10)

!

Ticks 0 1 2113|4567 (8|9 |10|11]112|13 (14 (15 (16|17 |18 |19 |20 |21 |22 |23 | 24
Pl

P2

P3

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8),

=(2,5)and P2 = (4, 10)

Ticks 0|1 21 3|4 |5]|6/|7

Pl

11

12

13

14

15

16

8 | 9 |10

P2

20

21

22

23

24

25

26

27

28

17 |18 |19

P3

Release

P2

EDF Example

= Scheduling 3 processes, PO = (I, 8),

=(2,5)and P2 = (4, 10)

Ticks 0|1 21 3|4 |5]|6/|7

Pl

11

12

13

14

15

16

8 | 9 |10

P2

20

21

22

23

24

25

26

27

28

17 |18 |19

P3

Release

P2

EDF Example

= Scheduling 3 processes, PO = (I, 8), " =(2,5) and P2 = (4, 10)

Ticks 0 1 213|456 (789 |10|11]12|13 (14 (151617 |18 | 19120 |21 |22 |23 |24 |25
Pl

P2

P3

PO

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8), " =(2,5) and P2 = (4, 10)

Ticks 0 1 213|456 (789 |10|11]12|13 (14 (151617 |18 | 19120 |21 |22 |23 |24 |25
Pl

P2

P3

PO

Release

EDF Example

= Scheduling 3 processes, PO = (I, 8),

=(2,5)and P2 = (4, 10)

Ticks 0|1 21 3|4 |5]|6/|7

Pl

11

12

13

14

15

16

8 | 9 |10

P2

20

21

22

23

24

25

26

17 |18 |19

P3

Release

27| 28|

Skeleton Code

* You should work on the pa3 branch as follows:

$ git clone https://github.com/snu-csl/xvé-riscv-snu
$ cd xvbé-riscv-snu

$ git checkout pa3
= Then, you have to set your STUDENTID in the Makefile

= Also, you should install python matplotlib packages.
$ sudo apt install python3-matplotlib

28

Skeleton Code

* The pa3 branch includes two user-level programs, "task|” and “task2”

* The first column shows the current time as measured by the time() system call
— Time is displayed in units of 0.1 tick (E.g. a value of |10 corresponds to | 1.0 ticks)

* The second column represents the PID of the process

xvé kernel is booting

init: starting sh
$ taskl

I 10 4 starts
|18 4 ends

| 18 5 starts
120 4 starts

* Note that the initial tick number may vary depending on when you execute the
program

Drawing Scheduling Graph

= We provide you with a Python script called graph.py
= You can use this Python script to convert the above xv6 output into a
graph image

$ make gemu-log
gemu-system-riscv64 -machine virt ... | tee xv6.log

xv6 kernel is booting

init: starting sh

$ task2 <--- Run the task2 program
110 4 starts

118 4 ends

QEMU: Terminated <--- Quit gemu using "a-x

*** The output of xv6 is logged in the 'xv6.log' file.

$ make png <--- Generate the graph. (this should be done on Ubuntu, not on xv6)
Jgraph.py xv6.log graph.png

Drawing Scheduling Graph

= |f everything goes fine, you will get the following graph:

V—J--'---Ilvvvvluulul----I--lvlvvvvlluuu|-|--|-..I|-....I..-lvvvl----,...l...--

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 9 9 100 105

PID 5

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

35 40 45 50 55 60 65 70 75 80 85 90 95

15 20 25 30 100 105

PID 6

Ticks

31

Restrictions

= The number of CPUs is already set to | in the Makefile

= You can assume that
* The actual execution time of a real-time process is always less than its worst-
case runtime
* Real-time processes perform no I/O operations

* The implementation of the EDF scheduler should not affect the
functionality of the default round-robin scheduler

* You only need to modify those files in the ./kernel directory

* Changes to other source code will be ighored during grading.

* Please remove all the debugging outputs before you submit

32

Tips

= You may want to consult:
* kernel/proc.{c, h}
— Process related function handling

* kernel/sysproc.c
— Several system call implementations

* kernel/trap.c
— Trap handling

* And other files if necessary

33

Submission

= Perform the make submit command to generate a compressed tar file

Upload this tar file to the submission server

The total number of submissions will be limited to 30

Only the version marked FINAL will be considered

It takes a long time to grading, so please wait for a few minutes

34

Thank you!

