
Project #3: EDF Scheduler

Kyu-Jin Cho

Systems Software &
Architecture Lab.

Seoul National University

2024.04.15

2

Reminder: Late Submission Policy
You can use up to 3 slip days during this semester

▪ You should explicitly declare the number of slip days you want to use
on the QnA board right after each submission

▪ Once slip days have been used, they cannot be canceled later

• 25% of the credit will be deducted for every single day delay

3

XV6 Process States
▪ XV6 process states (in proc.h)
• enum procstate

{UNUSED, USED, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

▪ UNUSED: not used
▪ USED: initialized for new process
▪ SLEEPING: wait for I/O, wait() or sleep()
▪ RUNNABLE: ready to run
▪ RUNNING: now running
▪ ZOMBIE: exited and waiting for parent to call wait()

4

XV6 Scheduler
▪ XV6 multiplexes by switching each CPU from one process to another

▪ The XV6 scheduler implements a simple scheduling policy
• Runs each process in turn
• This is called Round Robin

▪ Each CPU calls scheduler()
▪ Scheduler never returns.

5

XV6 Scheduler
▪ Steps involved in switching from one user process to another
• 1. User-kernel transition to the old’s process’s kernel thread
• 2. Context switch to the current CPU’s scheduler thread
• 3. Context switch to a new process’s kernel thread
• 4. Trap return to the user-level process

6

XV6 Code : scheduler()
▪ In kernel/proc.c
• void scheduler(void)

▪ Scheduler loops, doing
• 1. Choose a RUNNABLE process p to run
• 2. Mark process p’s state to RUNNING
• 3. Set the per-CPU current process
• 4. Context switch (start running process p)
• 5. If process is done running, go to 1.

▪ Scheduler never returns

7

XV6 Code : sched()
▪ In kernel/proc.c
• void sched(void)

▪ Called from exit(), sleep(), yield()

▪ Context switch (return to scheduler)

8

XV6 Code : swtch()
▪ In kernel/swtch.S
• void swtch(struct context *old, struct context *new)

▪ Save current registers in old, load from new

9

Project#3: EDF Scheduler
▪ In this project, you have to

1. Implement the sched_setattr() system call (10 points)
2. Implement the sched_yield() system call (20 points)
3. Implement the EDF (Earliest Deadline First) scheduler (70 points)

▪ Due date is 11:59(PM), April 28st (Sunday)

10

Project#3-1. Implement the sched_setattr()
▪ int sched_setattr(int pid, int runtime, int period)
• Sets the EDF scheduler parameters for the process whose id is pid
• If pid equals 0, the parameters of the calling process will be set
• The value of parameters should be positive integer where runtime < period
• For normal processes, these values are initialized to 0

• Return value
• 0 on success, -1 on error

11

Project#3-2. Implement the sched_yield()
▪ void sched_yield()
• For normal processes, the system call causes the calling process to relinquish the

CPU
• For real-time processes, calling this system call means that the process has

completed its execution in the current period

• In the skeleton code,
• It simply calls the yield() kernel function to schedule the next runnable process
• You need to modify the sched_yield() for real-time processes, so that the current

real-time process gives up the CPU and waits until the start of its next period

12

Project#3-3. Implement the EDF scheduler
▪ In EDF scheduling, processes are prioritized based on their deadlines
• The process with the closest deadline is given the highest priority and is scheduled to

run next
• P! = (C!, T!)
– C! is the maximum runtime that the process requires to complete under worst-case
– T! is the period of the process at which the process repeats

▪ In the periodic process model, deadlines are equal to periods
• Once a process is scheduled, the execution of the process should be completed

before the start of the next period

13

▪ Add the EDF scheduler on top of the default round-robin scheduler
• Real-time processes always have a higher priority than normal processes
• Normal processes are scheduled only when there are no runnable real-time processes

▪ If more than one real-time process has the same deadline
1. Select the current process if it is among them
2. If not, assign the CPU to the process with the smallest pid

Project#3-3. Implement the EDF scheduler

14

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0

P1

P2

Release

15

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0

P1

P2

Release

16

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0

P1

P2

Release

17

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0

P1 P1

P2

Release

18

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0

P1 P1

P2

Release

19

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0 P0

P1 P1

P2

Release

20

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0 P0

P1 P1 P1

P2 P2

Release

21

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0 P0 P0

P1 P1 P1 P1

P2 P2

Release

22

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0 P0 P0

P1 P1 P1 P1

P2 P2

Release

23

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0 P0 P0

P1 P1 P1 P1 P1

P2 P2 P2

Release

24

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0 P0 P0

P1 P1 P1 P1 P1

P2 P2 P2

Release

25

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0 P0 P0 P0

P1 P1 P1 P1 P1 P1

P2 P2 P2

Release

26

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0 P0 P0 P0

P1 P1 P1 P1 P1 P1

P2 P2 P2

Release

27

EDF Example
▪ Scheduling 3 processes, P0 = (1, 8), P1 = (2, 5) and P2 = (4, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Ticks

P1

P2

P3

P0 P0 P0 P0

P1 P1 P1 P1 P1 P1

P2 P2 P2

Release

28

Skeleton Code
▪ You should work on the pa3 branch as follows:

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ cd xv6-riscv-snu
$ git checkout pa3

▪ Then, you have to set your STUDENTID in the Makefile

▪ Also, you should install python matplotlib packages.
$ sudo apt install python3-matplotlib

29

Skeleton Code
▪ The pa3 branch includes two user-level programs, "task1” and “task2”
• The first column shows the current time as measured by the time() system call
– Time is displayed in units of 0.1 tick (E.g. a value of 110 corresponds to 11.0 ticks)

• The second column represents the PID of the process

• Note that the initial tick number may vary depending on when you execute the
program

xv6 kernel is booting

init: starting sh
$ task1
110 4 starts
118 4 ends
118 5 starts
120 4 starts
…

30

Drawing Scheduling Graph
▪ We provide you with a Python script called graph.py
▪ You can use this Python script to convert the above xv6 output into a

graph image

$ make qemu-log
qemu-system-riscv64 -machine virt … | tee xv6.log

xv6 kernel is booting

init: starting sh

$ task2 <--- Run the task2 program
110 4 starts
118 4 ends
...
QEMU: Terminated <--- Quit qemu using ^a-x
*** The output of xv6 is logged in the 'xv6.log' file.

$ make png <--- Generate the graph. (this should be done on Ubuntu, not on xv6)
./graph.py xv6.log graph.png

31

Drawing Scheduling Graph
▪ If everything goes fine, you will get the following graph:

32

Restrictions
▪ The number of CPUs is already set to 1 in the Makefile
▪ You can assume that

• The actual execution time of a real-time process is always less than its worst-
case runtime

• Real-time processes perform no I/O operations

▪ The implementation of the EDF scheduler should not affect the
functionality of the default round-robin scheduler

▪ You only need to modify those files in the ./kernel directory
• Changes to other source code will be ignored during grading.

▪ Please remove all the debugging outputs before you submit

33

Tips
▪ You may want to consult:

• kernel/proc.{c, h}
– Process related function handling

• kernel/sysproc.c
– Several system call implementations

• kernel/trap.c
– Trap handling

• And other files if necessary

34

Submission
▪ Perform the make submit command to generate a compressed tar file

▪ Upload this tar file to the submission server

▪ The total number of submissions will be limited to 30

▪ Only the version marked FINAL will be considered

▪ It takes a long time to grading, so please wait for a few minutes

Thank you!

