
Project #2: System Calls

Hyungjoon Kwon

(hishine6@snu.ac.kr)

Systems Software &

Architecture Lab.

Seoul National University

2024.03.25

mailto:hishine6@snu.ac.kr


2

§ User applications can access the operating system kernel
in a restricted way

§ The interfaces that allow user applications to request services
from the operating system kernel

§ The operating system kernel does the requested task
on behalf of user applications



3

§ Machine Mode
• CPU starts in machine mode

§ Supervisor Mode
• Allowed to execute privileged instructions

– Enable/Disable interrupts
– Modify the page table base register
– …

• The operating system kernel runs in supervisor mode

§ User Mode
• User processes run in user mode



4

ecall User Space

Kernel Space

uservec usertrap() syscall() usertrapret() userret

devintr()

next
instr

scause



5

§ satp
• Pointer to page table

§ scause (mcause)
• Event which caused a trap

§ sepc (mepc)
• Program counter when a trap occurs

§ sscratch (mscratch)
• A dedicated register for use by supervisor (machine) mode

§ stvec (mtvec)
• Pointer to trap vector



6

§ User applications execute the ecall instruction to invoke system calls
§ E.g., fork()

fork:
li a7, SYS_fork
ecall
ret

(Kernel Mode)
Syscall Routine



8

§ The RISC-V hart performs all these steps as a single operation
• Copy the pc into sepc
• Set scause to reflect the trap's cause
• Set the stval if necessary (e.g., fault address)
• Set the mode to supervisor
• Copy stvec(which is uservec in xv6) to the pc
• Start executing at the new pc
• Note: the hart doesn't save any registers other than the pc



9

§ Start in supervisor mode
§ Save registers values to trapframe
• Hart only saves the PC register

§ Initialize kernel stack pointer
§ Install the kernel page table
§ Jump to usertrap()



10

§ Install the kernel trap vector
§ Save user program counter
§ Handle an interrupt, exception, or system call

depending on the value of scause register
§ Call usertrapret() when it is done



11

§ Install the user trap vector
§ Restore user program counter
§ Jump to userret



12

§ Switch to the user page table
§ Restore registers from trapframe
§ Return to user mode (sret)



14

Supervisor mode



15

Just like returning 
from an interrupt

Supervisor mode



16

§ By default, all traps at any privilege level are handled in M-mode
§ Register medeleg and mideleg can set certain traps to be processed 

directly by a lower privilege level (S-mode)
§ Setting a bit in medeleg or mideleg will delegate the corresponding trap, 

when occurring in S-mode or U-mode, to the S-mode trap handler. 



17

§ Your task is to implement a new system call named kbdints()
§ It returns the total number of keyboard interrupts from the console 

input device since boot
§ System call number assigned to 22 (already done in branch pa2)



18

§ Your task is to implement a new system call named time()
§ It returns the value of the mtime register
§ System call number assigned to 23 (already done in branch pa2)
§ Assembly instruction to read the mtime register

§ The rdtime instruction or reading the mtimer register is only available 
in the RISC-V machine mode



19

§ Tips
• Read Chap. 4.1 of the xv6 book to understand RISC-V’s privileged modes

and trap handling mechanism
(More detailed information can be found in the RISC-V Privileged Architecture 
manual)

• Read Chap. 4.2 ~ 4.5 of the xv6 book to see how traps are handled in xv6
• Read Chap. 5.1 ~ 5.4 of the xv6 book to learn about hardware interrupts

http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf
http://csl.snu.ac.kr/courses/4190.307/2023-2/riscv-privileged-20211203.pdf
http://csl.snu.ac.kr/courses/4190.307/2023-2/riscv-privileged-20211203.pdf
http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf
http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf


20

§ You may want to consult:
• kernel/console.c

– Console related function handling
• kernel/syscall.{c, h}

– General system call handling
• kernel/sysproc.c

– Several system call implementations
• kernel/trap.c

– Trap handling
• kernel/kernelvec.S

– M-mode, S-mode interrupt vectors
• kernel/start.c

– xv6 kernel boot up code
• And other files if necessary



21

§ Restrictions
• We found that the rdtime instruction is not supported or does not behave 

correctly in older versions of qemu
– qemu version 8.2.0 or later ($ qemu-system-riscv64 –version)
• We will run qemu-system-riscv64 with the –icount shift=0 option, which enables 

aligning the host and virtual clocks. This setting is already included in the Makefile
for pa2 branch.

• You can assume a uniprocessor RISC-V system (CPUS = 1) for this project 
assignment

• You Should not modify the mcounteren register
• For kbdints, count should be initialized to 0 on boot
• Do not change the system call number for kbdints and time
• You only need to change the files in the kernel directory



22

§ Skeleton Code
• You should work on the pa2 branch of the xv6-riscv-snu repository as follows:

• The pa2 branch has a user-level utility program named kbdints, time
which can be built from the user/kdints.c, user/time.c file

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa2



23

§ Due
• 11:59 PM, April 7 (Sunday)

§ Submission
• Run the make submit command to generate a tarball

named xv6-pa2-{STUDENTID}.tar.gz in the xv6-riscv-snu directory
• Upload the compressed file to the submission server
• The total number of submissions for this project will be limited to 30
• Only the version marked FINAL will be considered for the project score
• In this project, you do not need to submit a report



Thank you!


