
Processes

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

OS Internals

Hardware

System Call Interface

shell
shell

ls
ps

Hardware Control (Interrupt handling, etc.)

File System
Management

I/O Management
(device drivers)

Memory
Management

Process
Management P

ro
te

ctio
n

Kernel
space

User
space trap

scheduler

IPC

synchronization

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

What is a Process?

▪ A(An) ________ of a program in execution

▪ Java analogy:

• Class → “program” (static)

• Object → “process” (dynamic)

▪ The basic unit of protection

▪ A process is identified using its process ID (PID)

▪ A process includes

• CPU context (registers)

• OS resources (address space, open files, etc.)

• Other information (PID, state, owner, etc.)

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

From Program to Process

Stack

Heap

program

Code

Data

code

data

PC

SP

Memory Disk

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Running a Process

Code

Data

Fetch IMem[PC]
Decode I
Execute I
Update PC

PC
CPU

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Running Multiple Processes

CPU

CPU

Code A

Data A

Code B

Data B

Code C

Data C

CPU

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Interleaving Multiple Processes

Code A

Data A

Code B

Data B

Code C

Data C

CPU

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Virtualizing the CPU

Code A

Data A

OS Code

OS Data

Code B

Data B

OS creates an illusion
that each process has its
own CPU (and memory)

scheduler

CPU

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Example: Creating a Process
#include <sys/types.h>
#include <unistd.h>

int main() {
int pid;

if ((pid = fork()) == 0)
printf (“Child of %d is %d\n”, getppid(), getpid()); /* child */

else
printf (“I am %d. My child is %d\n”, getpid(), pid); /* parent */

}

$./a.out

I am 31098. My child is 31099.

Child of 31098 is 31099.

$./a.out

Child of 31100 is 31101.

I am 31100. My child is 31101.

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Process Hierarchy

▪ Parent-child relationship

• One process can create another process

• Unix calls the hierarchy a “process group”

• Windows has no concept of process hierarchy

▪ Browsing a list of processes:

• ps in Unix

• Task Manager (taskmgr) in Windows

sh

$ cat file1 | wc

cat wc

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Process Creation

▪ fork()

• Creates a new process cloning the parent process

– Parent inherits most of resources and privileges: open files, UID, etc.

– Child also duplicates the parent’s address space

• Parent may either wait for the child to finish (using wait()), or it may continue in

parallel

• Shells or GUIs use this system call internally

• Called once, returned twice

▪ exec()

• Replaces the current process image with a new program

• Windows: CreateProcess() = fork() + exec()

• Called once, never returns

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Process Termination

▪ Normal exit (voluntary)

▪ Error exit (voluntary)

▪ Fatal error (involuntary)

• Segmentation fault – illegal memory access

• Protection fault

• Exceed allocated resources, etc.

▪ Killed by another process (involuntary)

• By receiving a signal

▪ _______ process: terminated, but not removed

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Simplified Shell
int main(void)
{

char cmdline[MAXLINE];
char *argv[MAXARGS];
pid_t pid;
int status;

while (getcmd(cmdline, MAXLINE) >= 0) {
parsecmd(cmdline, argv);
if (!builtin_command(argv)) {

if ((pid = fork()) == 0) {
if (execv(argv[0], argv) < 0) {

printf(“%s: command not found\n”, argv[0]);
exit(0);

}
}
waitpid(pid, &status, 0);

}
}

}

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Process State Transitions

RunningReady

Scheduled

Time slice exhausted

I/O or event wait

Blocked

I/O or event completion

Created exit

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Processes

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Implementing Processes

▪ PCB (Process Control Block) or Process Descriptor

• Each PCB represents a process

• Contains all the information about a process

– CPU registers

– PID, PPID, process group, priority, process state, signals

– CPU scheduling information

– Memory management information

– Accounting information

– File management information

– I/O status information

– Credentials

• struct task_struct in Linux: 6592 bytes as of Linux 6.2.0

• struct proc in xv6: 360 bytes

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Context Switch

▪ The act of switching CPU from one process to another

▪ Administrative overhead

• Saving and restoring registers and memory maps

• Flushing and reloading the memory cache

• Updating various tables and lists, etc.

▪ The overhead depends on hardware support

• Multiple register sets in UltraSPARC

• Advanced memory management techniques may require extra data to be switched

with each context (e.g., page tables, TLB, etc.)

▪ 100s or 1000s of switches/sec typically

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Example: Context Switches in Linux

▪ Total uptime: 10,738,129.85 sec (124 days) /proc/uptime

▪ Total 6,770,575,007 context switches /proc/stat

▪ Average 630.5 context switches / sec (for all 4 cores)

▪ Roughly 158 context switches / sec / core

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Performing Context Switch in xv6
Process KernelRISC-V

❶ Timer interrupt
❷ Set sepc pc, scause

Disable interrupt
Change to kernel mode
Jump to trap handler @ stvec ❸ Save user regs to trapframe(A)

Change to kernel page table
Make A’s state RUNNABLE
Save A’s context to PCB(A)
Run scheduler()
Make B’s state RUNNING
Restore B’s context from PCB(B)

❺Move back to user mode
Enable interrupt
Set pc sepc

❹ Change to user page table
Restore user regs from trapframe(B)
return-from-trap

Process A

Process B

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Process State Queues

▪ The OS maintains a collection of queues that represent the state of all

processes in the system

• Ready queue (or run queue)

• Wait queue(s): one queue for each type of event (device, timer, message, …)

▪ Each PCB is queued onto a state queue according to its current state

• As a process changes state, its PCB is migrated between the various queues

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Implementing fork()

▪ Creates and initializes a new PCB

▪ Creates and initializes a new address space

▪ Initializes the address space with a copy of the entire contents of the

address space of the parent

▪ Initializes the kernel resources to point to the resources used by the

parent (e.g., open files)

▪ Places the PCB on the ready queue

▪ Returns the child’s PID to the parent, and zero to the child

int fork()

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Implementing exec()

▪ Stops the current process

▪ Loads the program “prog” into the process’s address space

▪ Initializes hardware context and “args” for the new program

▪ Places the PCB on the ready queue

▪ exec() does not create a new process

▪ What does it mean for exec() to return?

int execv(char *prog, char *argv[])

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Policy vs. Mechanism

▪ Policy

• What should be done?

• Policy decisions must be made for all resource allocation and scheduling problems

• e.g., What is the next process to run?

▪ Mechanism

• How to do something?

• The tool for implementing a set of policies

• e.g., How to make multiple processes run at once?

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Separating Policy from Mechanism

▪ A key principle in operating system design

▪ Policies are likely to change depending on workloads and also across

places or over time

▪ A general mechanism, separated from policy, is more desirable

▪ Allows to build a more modular OS

▪ Enables extensible systems – User-specific policies?

	슬라이드 1: Processes
	슬라이드 2: OS Internals
	슬라이드 3: What is a Process?
	슬라이드 4: From Program to Process
	슬라이드 5: Running a Process
	슬라이드 6: Running Multiple Processes
	슬라이드 7: Interleaving Multiple Processes
	슬라이드 8: Virtualizing the CPU
	슬라이드 9: Example: Creating a Process
	슬라이드 10: Process Hierarchy
	슬라이드 11: Process Creation
	슬라이드 12: Process Termination
	슬라이드 13: Simplified Shell
	슬라이드 14: Process State Transitions
	슬라이드 15: Processes
	슬라이드 16: Implementing Processes
	슬라이드 17: Context Switch
	슬라이드 18: Example: Context Switches in Linux
	슬라이드 19: Performing Context Switch in xv6
	슬라이드 20: Process State Queues
	슬라이드 21: Implementing fork()
	슬라이드 22: Implementing exec()
	슬라이드 23: Policy vs. Mechanism
	슬라이드 24: Separating Policy from Mechanism

