Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

Solid State Drives
(SSDs)



Flash Memory Cell

* Transistor with floating gate
* The floating gate is insulated all around with an oxide layer

* Electrons trapped in the floating gate can remain for up to years

Floating Gate

|

Source Line

http://www.thenandflash.com
4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2



Flash Memory Characteristics

= Erase-before-write

* Read
* Write or Program: | 2> 0 14241
* Erase: 0 2 | write
(program)
= Bulk erase 1 1101 10 1 0

* Program unit:

— NOR: byte or word 1 erase

— NAND: page

11 11 1 1 1 1

 Erase unit;

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)



Logical View of NAND Flash

" A collection of blocks
* Each block has a number of pages

* The size of a block or a page depends on the technology (but, it’s
getting larger)

B I

Data area Spare area




NAND Flash Types

= SLC NAND

° S|ng|e Level Ce” What is the Difference

» SLC NAND stores 2 states per memaory cell and allows 1 bit
* | bit/cell

= MLC NAND

* Multi Level Cell (misnomer)

* 2 bits/cell -
5LC One Bit Per Cell

- T LC NA N D » MILC stands for multi-level cell HAND
» MLC NAND stores 4 states per memory c2ll and allows 2 bits

programmediread per memorny cell

Reference Polnt

Distribution of Cells

Reference Polnts

* Triple Level Cell
* 3 bits/cell

= 3D NAND

Distributlion of Cells

MLC: Two Bits Per Cell Vi

Source: Micron Technology, Inc.

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5



NAND Applications

= Universal Flash Drives (UFDs)

* Flash cards
* CompactFlash, MMC, SD, Memory stick, ...

= Smartphones
* eMMC (Embedded MMC)
* UFS (Universal Flash Storage)

= SSDs (Solid State Drives)

= Other embedded devices

* MP3 players, Digital TVs, Set-top boxes,
Car navigators, ...




Anatomy of an SSD

= Samsung 850 Evo = Samsung 980 Pro

- ey . L. - .
4 ' 3 { =t
=5

i
V-NAND SSD "Mk PN MZVL21TOHCLR SI\MSUNG

=~ R MODEL MZ-VBPITO 202008
980 3 psm MGBJZZZMMUBA!‘SAXTHHJSFXPOTQLL ey
GON80018
.|||H|\||l||||||||\|||||!|H|Hl||||H|HH|\||||H.
“Cle 40NVMe M.2 UI64 002538B801500168  R-R-SEC-MZ-VBP1TO

ShmsunG Eiecronics co. o, 1TB IIIHIIIIIIIHHI\IIIIH\IIIIHIIIIHIIIIHI

N

0000000
00000

NAND Flash SSD Controller

http://www.anandtech.com/show/9451/the-2tb-samsung-850-pro-evo-ssd-review
https: //www.tomshardware.com/reviews/samsung-980-pro-m-2-nvme-ssd-review

7



Flash Flash Memory Bus 0
Controller | 1
Embedded SRAM
SATA CPU(s)
SAS ) Flash Flash Memory Bus 1
PCle Host Controller | | |
< Interface
Controller Flash Flash Memory Bus 2
- Controller | | |
DRAM
Controller
Flash Flash Memory Bus 3
SSD Controller Controller ' [
NAND array

DRAM




NVMe SSD

= PCle-based (PCle Gen. 3: | GB/s per lane, up to 32 lanes)
* Deep queue: 64K commands per queue, up to 64K queues
= Streamlined command set: only |3 required commands

" One register write to issue a command (“doorbell”)

Controller Core 0 Core 1 Core n

Management
Admin Admin 1o 1o I[o] 110 110 o l[e]
Submission Completion Submission Completion Submission Submission Completion Submission Completion

Doorbell NVMe Controller

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)



T 550 Samsung) 10D (eogate

Model

Capacity

Form factor
DRAM
Host interface

Power consumption
(Active / Idle / Sleep)

Performance

Pricel

MZ-V8P2TO (980 Pro)

2TB
(512Gb 128-Layer 3D V-NAND TLC
x 16 dies/chip x 2 chips)

M.2 (2280), 55g
2GB
NVMe (PCle 4.0 x 4, 8GB/s)

6.1 W/ 0.035 W /0.005 W

7000 MB/s
5100 MB/s
1,000K IOPS (QD32)
1,000K IOPS (QD32)

Sequential read:
Sequential write:
Random read:
Random write:

22,000 IOPS (QD1)
60,000 I0OPS (QD1)

Random read:
Random write:

246,050 won (123won/GB)

ST2000LMO003 (SpinPoint M9T)

2TB
(3 Discs, 6 Heads, 5400 RPM)

2.5”,130g
32 MB
SATA-3 (600 MB/s)

23W/0.7W/0.18 W

Sequential read: 124 MB/s
Sequential write: 124 MB/s
Random read: 56 IOPS
Random write: 98 IOPS

Power-on to ready: 3.5 sec
Average seek: 12/14 ms
Average latency: 5.6 ms

66,000 won (33won/GB)



Challenges

No in-place update

Limited P/E cycles
Bit errors

Bad blocks

Read/write disturbance
Retention errors

Multiple planes/dies/channels

Slower & more power-consuming
program/erase operations

Sudden power failure

Address mapping,
Garbage collection (with hot/cold separation)

Wear leveling
ECC
Bad block remapping

Background activity for data integrity
Exploiting parallelism, prefetching
Hiding latency, power throttling

Power loss protection

11



Flash Translation Layer (FTL)

= A software layer to make NAND flash fully emulate traditional block

devices (e.g., disks)

Read Sectors Write Sectors

A

Read erte Erase

Device Driver

S

Write Sectors

Read Sectors

Read Sectors

O

Write Sectors

O

FTL

+

Device Driver

Source

: Zeen Info. Tech.

12



Address Mapping

* Required since flash pages cannot be overwritten

write

LBA address space
(As seen by the host)

-

Mapping table

> —
»

»

B oo

NAND flash

13



Example: Page Mapping

* Flash configuration

Page Map Table

* Page size: 4KB o G PBN:O
* # of pages / block = 4 ; =
s

* Current state 4;= et
* Written to page 0, 1,2,8,4,5 ° =

. Readi 5 : = PBN: 2
eading page —
i(1)-

Logical page #5 } PBN: 3

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Data Block

vui A OO N =R O

v
&DW\lO\U‘IthHOE

[
= O

R R R R
v b WN

14



Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

vui A OO N =R O

v
&DW\lO\U‘IthHOE

[
= O

N N
v b WN

15



Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

Page Map Table
0 0

O 00 NoOU»nn &~ WN R
vl

N =
= O

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

O un A ON R O

O
W\IO\U'I-hWNHOE

AN
m o v

N N
v b WN

16



Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

Page Map Table

0

O 00 NoOU»nn &~ WN R

N =
= O

0

gu bH NN =

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

w o unn B~ ON R O

O
W\IO\U'I-hWNHOE

AN
m o v

N N
v b WN

17



Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

i

Data Block

PBN: 0 0

1

2

8

PBN: 1 4

25 |

Invalidate 9

old page 3

PBN: 2 5
Updated
page write
PBN: 3

v
&DW\lO\U‘IthHOE

[
= O

R R R R
v b WN

18



Garbage Collection

= Garbage collection (GC)
* Eventually, FTL will run out of blocks to write to
* GC must be performed to reclaim free space
* Actual GC procedure depends on the mapping scheme

= GC in page-mapping FTL
* Select victim block(s)

* Copy all valid pages of victim block(s) to free block
* Erase victim block(s)

* Note: At least one free block should be reserved for GC

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

19



Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

H OO N B O

Spare block

v
&DW\IO\U'I-thHOE

[
= O

20



Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

0
1

2

Spare block

o
2

O 00 NoOoOu»U & WIN R O

21



Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

0
1
2

> S
B X

4
X450

3
5
8
9

Spare block

o
2

O 00 NoOoOu»U & WIN R O

22



Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

0
1

2

4

=5
X250
R XN

5

8
9
3

Spare block

o
2

O 00 NoOoOu»U & WIN R O

23



Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

Page Map Table Data Block

o
2

A IW N = O

* New requests (in order)
* Write to page 8

* Write to page 9

O WjIN O 0

* Write to page 3

* Write to page | Valid page copy

12

. PBN: 3
* Write to page 4 Updated page write ——— 13
14

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

24



Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

Data Block

0
X1

2

PBN: 1

PBN: 0

Spare block

PBN: 2

W W 00 un

PBN: 3 -251-

4

o
2

O 00 NoOoOu»U & WIN R O

25



Over-Provisioning and GC

|OPS for random write workloads

* OP (Over-Provisioning) =

Physical Capacity 1

Logical Capacity

* What about for sequential write workloads!?

4KB Random Write IOPS Normalized to FOB

e 7.4% Effective OP — 19.3% Effective OP 34.2% Effective OP

e 53.4% Effective OP e 79.0% Effective OP  cow 114.8% Effective OP |

I I I I I I L] L] !
50 100 150 200 250 300 350 400 450 500

Minutes

7% Effective Over-Provisioning

-

=

m"m

Valid data to move: 12

25% Effective Over-Provisioning

H

I
™

Valid data to move: 9

D. Glen, Differences in Personal vs. Enterprise SSD Performance, Micron Technology, Inc.

26



OS Implications

* NAND flash has different characteristics compared to disks
* No seek time
* Asymmetric read/write access times
* No in-place-update
* Good sequential read/write and random read performance, but bad random write
performance
* Wear-leveling

* Traditional operating systems have been optimized for disks. What should be
changed!?

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

27



SSD Support in OS & Applications

= Align file system partition with SSD layout

= larger block size (4KB)

* Turn off “defragmentation” for SSDs

* New “TRIM” command (remove-on-delete)

= Simpler & scalable I/O scheduler

* Flash-aware file systems (e.g., F2FS in Linux/Android)
" New “multi-stream” interface

* User-level storage access (e.g., SPDK)

= Fairness, isolation, etc.



Data Flash Host CPU | Hardware |Computation| Software
Interfaces . . 1 A
placement | management movement | utilization | complexity | capability | modification
o

. Block
Conventional | ==
SSD TR | (SATA, SAS, Host Device Yes - - - No -
2 NVMe)
ZNS SSD Restricted  ZNS: Host  ZNS: Host ZNS: No . . .
EDP SSD Hﬂ Block FDP: Host + FDP: Host + FDP: Yes High High Low No High
(NVMe) Device Device '
=
Key-value . . . .
KV-SSD . ‘ (NVMe) Device Device Yes Low Low High Some High
SmartSSD g FPOA Y e Device Yes Low Low High Yes Very High
s ' (NVMe)
Computational fompute + Host or
S Block? device? Device Yes Low Low High Yes Very High
torage (NVMe) .

29



Beauty and the Beast

* NAND Flash memory is a beauty

* Small, light-weight, robust, low-cost, low-power, non-volatile
device

* NAND Flash memory is a beast

* No in-place-update

Much slower program/erase operations

Erase unit > read/write unit

Bit errors

Limited lifetime etc.

* Software support is essential for performance and
reliability!

30



	슬라이드 1: Solid State Drives (SSDs)
	슬라이드 2: Flash Memory Cell
	슬라이드 3: Flash Memory Characteristics
	슬라이드 4: Logical View of NAND Flash
	슬라이드 5: NAND Flash Types
	슬라이드 6: NAND Applications
	슬라이드 7: Anatomy of an SSD
	슬라이드 8: SSD Internals
	슬라이드 9: NVMe SSD
	슬라이드 10: HDDs vs. SSDs
	슬라이드 11: Challenges
	슬라이드 12: Flash Translation Layer (FTL)
	슬라이드 13: Address Mapping
	슬라이드 14: Example: Page Mapping
	슬라이드 15: Example: Page Mapping
	슬라이드 16: Example: Page Mapping
	슬라이드 17: Example: Page Mapping
	슬라이드 18: Example: Page Mapping
	슬라이드 19: Garbage Collection
	슬라이드 20: Example: GC in Page Mapping
	슬라이드 21: Example: GC in Page Mapping
	슬라이드 22: Example: GC in Page Mapping
	슬라이드 23: Example: GC in Page Mapping
	슬라이드 24: Example: GC in Page Mapping
	슬라이드 25: Example: GC in Page Mapping
	슬라이드 26: Over-Provisioning and GC
	슬라이드 27: OS Implications
	슬라이드 28: SSD Support in OS & Applications
	슬라이드 29: New NVMe SSD Proposals
	슬라이드 30: Beauty and the Beast

