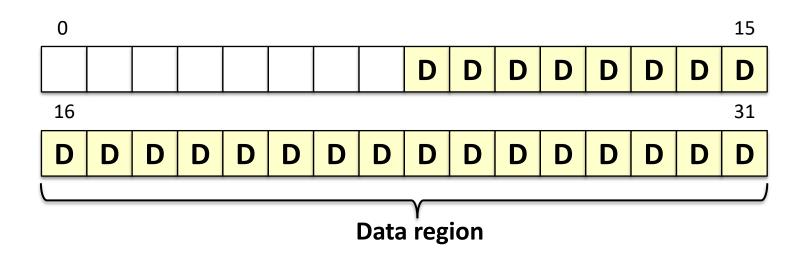
Jin-Soo Kim (jinsoo.kim@snu.ac.kr) Systems Software & Architecture Lab. Seoul National University

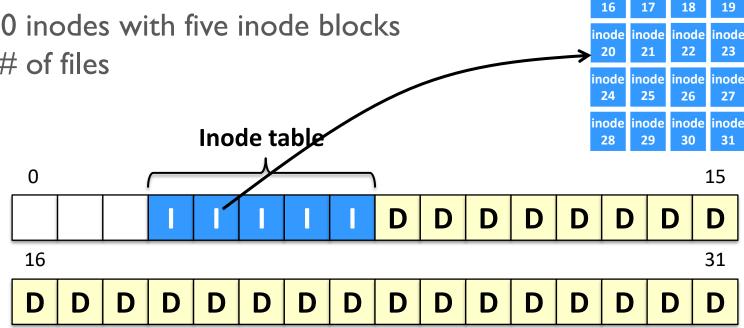
Spring 2024

File System Implementation



Implementing a File System

- On-disk structures
 - How does file system represent files and directories?
 - How to manage various file system metadata?
- Access methods
 - What steps should be taken for various file system APIs?
 - open(), read(), write(), close(), ...

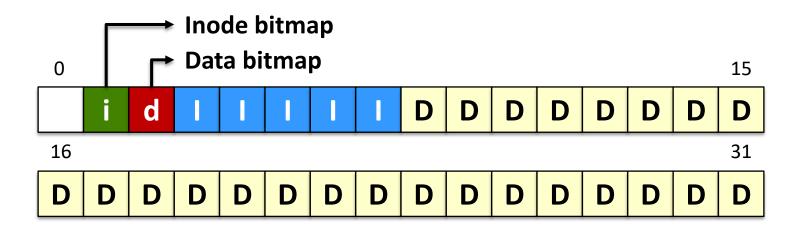

VSFS: Data Blocks

- "Very Simple File System"
 - Divide the disk into blocks (e.g., 4KB)
 - Block size is a multiple of sector size
 - Most of disk blocks are used for storing user data
 - A small portion of the disk is reserved for file system metadata

VSFS: Inodes

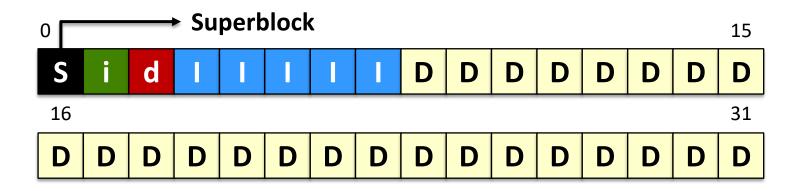
- Each inode holds file metadata
 - The size of an inode is fixed (typically, I 28B ~ 256B)
 - For 256B per inode, a 4KB block can hold 16 inodes
 - The total 80 inodes with five inode blocks = the max # of files

inode inode inode


18

nodel

17


VSFS: Bitmaps

- Data bitmap & Inode bitmap
 - Each bit indicates whether the corresponding block/inode is free (0) or in-use (1)
 - One data bitmap (or inode bitmap) block can support up to 4096*8 data blocks (or inodes)

VSFS: Superblock

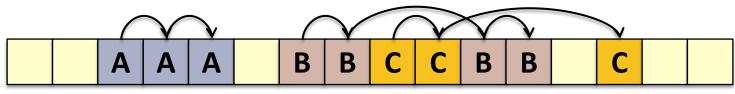
- Superblock holds file system metadata
 - File system type
 - Block size
 - Total number of blocks
 - Number of inodes
 - Number of data / inode bitmap blocks, ...

Allocation Strategies

- How to map files to disk blocks?
 - Similar to mapping variable-sized address spaces to physical memory
 - Same principle: map logical abstraction to physical resources

Issues

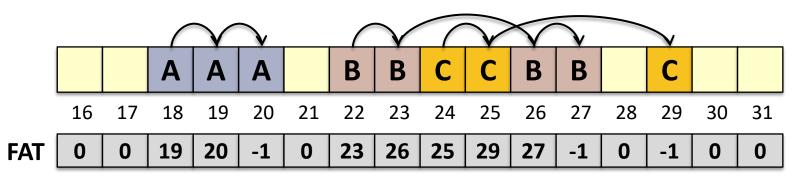
- Ability to grow file over time
- Performance of sequential accesses
- Speed to find data blocks for random accesses
- Metadata overhead to track data blocks


Contiguous Allocation

- Allocate each file to contiguous blocks on disk
 - Metadata: <starting block #, length>
 - Feasible and widely used for CD-ROMs
 - Example: IBM OS/360

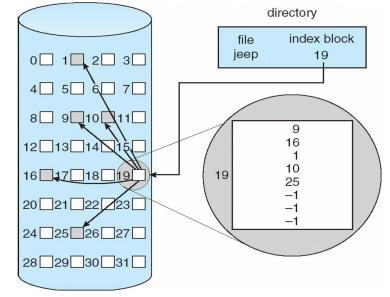
- Horrible external fragmentation (needs periodic compaction)
- May not be able to grow file without moving
- Excellent performance for sequential accesses
- Simple calculation to perform random accesses
- Little overhead for metadata

Linked Allocation

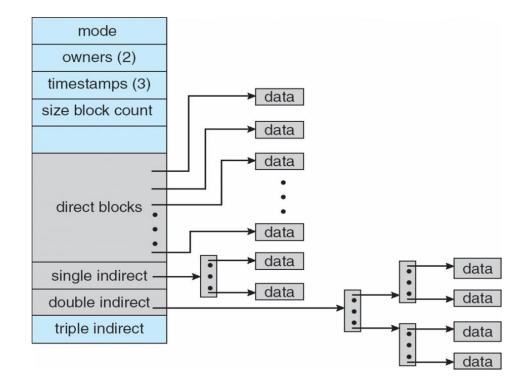

- Allocate linked-list of fixed-sized blocks
 - Metadata: <starting block #>
 - Each block contains pointer to next block
 - Example: TOPS-10, Alto

- No external fragmentation
- File can grow easily
- Sequential access performance depends on data layout
- Poor _____ access performance
- Waste pointer per block (fragile -- it can be lost or damaged)

File Allocation Table (FAT)

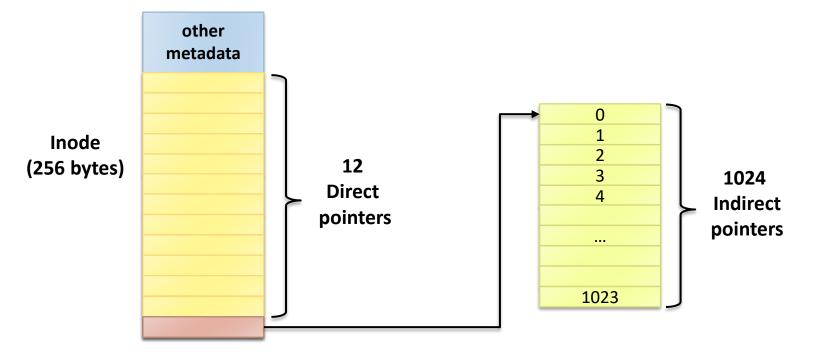

- Variation of linked allocation
 - Keep linked-list information for all files in on-disk FAT
 - FAT is cached in main memory to avoid disk seeks
 - Metadata: <starting block #> + FAT
 - Example: MS-DOS, Windows (FAT12, FAT16, FAT32)

- Improved random access performance
- Scalability with larger file systems?

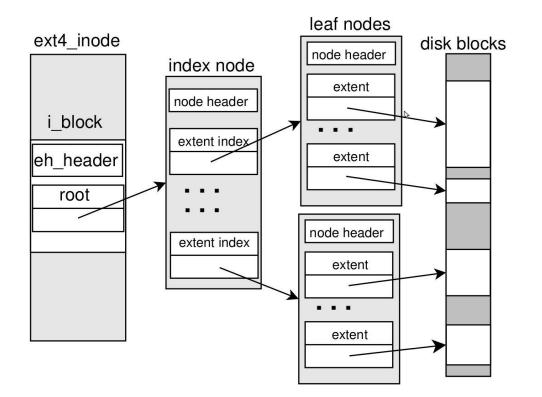

Indexed Allocation

- Allocate fixed-size blocks for each file
 - Metadata: An array of block pointers
 - Each block pointer points to the corresponding data block
 - No external fragmentation
 - File can grow easily up to max file size
 - Sequential access performance depends on data layout
 - Random accesses supported
 - Large overhead for metadata: wasted space for unneeded pointers (most files are small)

Multi-level Indexing


- Variation of indexed allocation
 - Dynamically allocate hierarchy of pointers to data blocks
 - Metadata: small number of direct pointers + indirect pointers
 - Example: Unix FFS, Linux Ext2/3
 - Does not waste space for unneeded pointers
 - Need to read indirect blocks of pointers to calculate addresses (extra disk read)
 - Keep indirect blocks cached in main memory

Multi-level Indexing in VSFS


Configurations

- An inode has 12 direct pointers and 1 single indirect pointer
- 4-byte disk address: 1024 pointers per 4KB block
- Max file size = (12 + 1024) * 4KB = 4144KB

Extent-based Allocation

- Allocate multiple contiguous regions (extents) per file
 - Organize extents into multi-level tree structure (e.g., B+tree)
 - Each leaf node: <logical block #, physical block #, extent size>
 - Example: Linux Ext4
 - Reasonable amount of external fragmentation
 - Still good sequential performance
 - Some calculations needed for random accesses
 - Relatively small metadata overhead

Directory Organization

- Common design
 - Directory is a special file containing directory entries
 - Large directories just use multiple data blocks
 - Use bits in inode to distinguish directories from files
- Table (fixed length entries) or linear list:
 - Requires a linear search to find an entry
- Tree:
 - Entries may be sorted to decrease the average search time and to produce a sorted directory listing easily

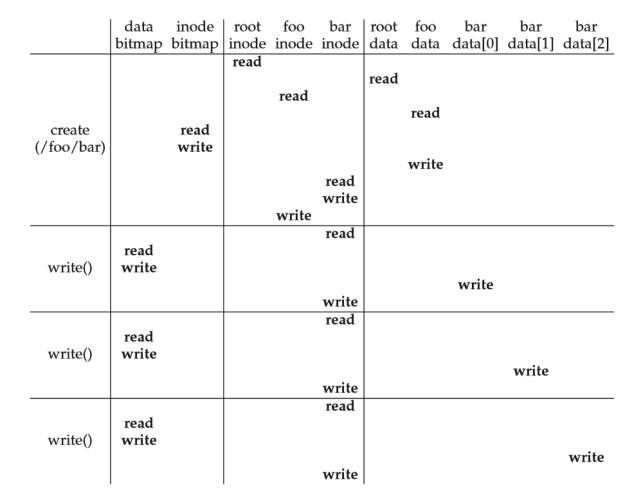
Hash table:

• Fast, but should be scalable as the number of files increases

VSFS: Directory

- A linear list of <file name, inode number>
 - Similar to Linux Ext2 directory
 - Supports variable-sized names
 - Example: /dir
 - Inode number for /dir?
 - Inode number for the root directory?

inode number	record length	name length		na	me					
5	12	2	•	\0	\0	\0				
2	12	3	•	•	\0	\0				
12	12	4	f	0	0	\0				
0	12	4	b	а	r	\0	<deleted entry=""></deleted>			ntry>
24	16	7	f	0	0	b	а	r	\0	\0


Reading a File

Open /foo/bar and read three blocks

	data	inode							bar	bar data[2]
	biumap	bitmap		mode	mode	uata	uata	uata[0]	data[1]	data[2]
open(bar)			read							
						read				
				read						
							read			
					read					
read()					read					
								read		
					write					
read()					read					
									read	
					write					
read()					read					
										read
					write					

Writing a File

Create /foo/bar and write three blocks

