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Implementing a File System

▪ On-disk structures

• How does file system represent files and directories?

• How to manage various file system metadata?

▪ Access methods

• What steps should be taken for various file system APIs?

• open(), read(), write(), close(), …
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VSFS: Data Blocks

▪ “Very Simple File System”

• Divide the disk into blocks (e.g., 4KB)

• Block size is a multiple of sector size 

• Most of disk blocks are used for storing user data

• A small portion of the disk is reserved for file system metadata
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VSFS: Inodes

▪ Each inode holds file metadata

• The size of an inode is fixed (typically, 128B ~ 256B)

• For 256B per inode, 

a 4KB block can hold 16 inodes

• The total 80 inodes with five inode blocks

= the max # of files
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VSFS: Bitmaps

▪ Data bitmap & Inode bitmap

• Each bit indicates whether the corresponding block/inode is free (0) or in-use (1)

• One data bitmap (or inode bitmap) block can support up to 4096*8 data blocks (or 

inodes)
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VSFS: Superblock

▪ Superblock holds file system metadata

• File system type

• Block size

• Total number of blocks

• Number of inodes

• Number of data / inode bitmap blocks, …
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Allocation Strategies

▪ How to map files to disk blocks?

• Similar to mapping variable-sized address spaces to physical memory

• Same principle: map logical abstraction to physical resources

▪ Issues

• The amount of fragmentation (mostly _________)

• Ability to grow file over time

• Performance of sequential accesses

• Speed to find data blocks for random accesses

• Metadata overhead to track data blocks
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Contiguous Allocation

▪ Allocate each file to contiguous blocks on disk

• Metadata:  <starting block #, length>

• Feasible and widely used for CD-ROMs

• Example: IBM OS/360

• Horrible external fragmentation (needs periodic compaction)

• May not be able to grow file without moving

• Excellent performance for sequential accesses

• Simple calculation to perform random accesses

• Little overhead for metadata
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Linked Allocation

▪ Allocate linked-list of fixed-sized blocks

• Metadata: <starting block #>

• Each block contains pointer to next block

• Example: TOPS-10, Alto

• No external fragmentation

• File can grow easily

• Sequential access performance depends on data layout

• Poor _________  access performance

• Waste pointer per block (fragile -- it can be lost or damaged)
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File Allocation Table (FAT)

▪ Variation of linked allocation

• Keep linked-list information for all files in on-disk FAT 

• FAT is cached in main memory to avoid disk seeks

• Metadata:  <starting block #> + FAT

• Example: MS-DOS, Windows (FAT12, FAT16, FAT32) 

• Improved random access performance

• Scalability with larger file systems?
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Indexed Allocation

▪ Allocate fixed-size blocks for each file

• Metadata:  An array of block pointers

• Each block pointer points to the corresponding data block

• No external fragmentation

• File can grow easily up to max file size

• Sequential access performance depends on data layout

• Random accesses supported

• Large overhead for metadata: 

wasted space for unneeded pointers 

(most files are small)
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Multi-level Indexing

▪ Variation of indexed allocation

• Dynamically allocate hierarchy of pointers to data blocks

• Metadata:  small number of direct pointers + indirect pointers

• Example: Unix FFS, Linux Ext2/3

• Does not waste space for unneeded pointers

• Need to read indirect blocks of pointers 

to calculate addresses (extra disk read)

– Keep indirect blocks cached in main memory
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Multi-level Indexing in VSFS

▪ Configurations

• An inode has 12 direct pointers and 1 single indirect pointer

• 4-byte disk address: 1024 pointers per 4KB block

• Max file size = (12 + 1024)  * 4KB = 4144KB
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Extent-based Allocation

▪ Allocate multiple contiguous regions (extents) per file

• Organize extents into multi-level tree structure (e.g., B+tree)

• Each leaf node:  <logical block #, physical block #, extent size>

• Example: Linux Ext4

• Reasonable amount of external 

fragmentation

• Still good sequential performance

• Some calculations needed for random 

accesses

• Relatively small metadata overhead 
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Directory Organization

▪ Common design

• Directory is a special file containing directory entries

• Large directories just use multiple data blocks

• Use bits in inode to distinguish directories from files

▪ Table (fixed length entries) or linear list:

• Requires a linear search to find an entry

▪ Tree: 

• Entries may be sorted to decrease the average search time and to produce a 

sorted directory listing easily

▪ Hash table:

• Fast, but should be scalable as the number of files increases



4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

VSFS: Directory

▪ A linear list of <file name, inode number>

• Similar to Linux Ext2 directory

• Supports variable-sized names

• Example:  /dir
– Inode number for /dir?

– Inode number for the root directory?
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Reading a File

▪ Open /foo/bar and read three blocks
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Writing a File

▪ Create /foo/bar and write three blocks
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