
File System

Implementation

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Implementing a File System

▪ On-disk structures

• How does file system represent files and directories?

• How to manage various file system metadata?

▪ Access methods

• What steps should be taken for various file system APIs?

• open(), read(), write(), close(), …

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

VSFS: Data Blocks

▪ “Very Simple File System”

• Divide the disk into blocks (e.g., 4KB)

• Block size is a multiple of sector size

• Most of disk blocks are used for storing user data

• A small portion of the disk is reserved for file system metadata

S d I I I I I D D D D D D D D

D D D D D D D D D D D D D D D D

0 15

16 31

Data region

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

VSFS: Inodes

▪ Each inode holds file metadata

• The size of an inode is fixed (typically, 128B ~ 256B)

• For 256B per inode,

a 4KB block can hold 16 inodes

• The total 80 inodes with five inode blocks

= the max # of files

S i d I I I I I D D D D D D D D

D D D D D D D D D D D D D D D D

0 15

16 31

Inode table

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

VSFS: Bitmaps

▪ Data bitmap & Inode bitmap

• Each bit indicates whether the corresponding block/inode is free (0) or in-use (1)

• One data bitmap (or inode bitmap) block can support up to 4096*8 data blocks (or

inodes)

S i d I I I I I D D D D D D D D

D D D D D D D D D D D D D D D D

0 15

16 31

Inode bitmap

Data bitmap

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

VSFS: Superblock

▪ Superblock holds file system metadata

• File system type

• Block size

• Total number of blocks

• Number of inodes

• Number of data / inode bitmap blocks, …

S i d I I I I I D D D D D D D D

D D D D D D D D D D D D D D D D

0 15

16 31

Superblock

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Allocation Strategies

▪ How to map files to disk blocks?

• Similar to mapping variable-sized address spaces to physical memory

• Same principle: map logical abstraction to physical resources

▪ Issues

• The amount of fragmentation (mostly _________)

• Ability to grow file over time

• Performance of sequential accesses

• Speed to find data blocks for random accesses

• Metadata overhead to track data blocks

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Contiguous Allocation

▪ Allocate each file to contiguous blocks on disk

• Metadata: <starting block #, length>

• Feasible and widely used for CD-ROMs

• Example: IBM OS/360

• Horrible external fragmentation (needs periodic compaction)

• May not be able to grow file without moving

• Excellent performance for sequential accesses

• Simple calculation to perform random accesses

• Little overhead for metadata

A A A B B B B C C C

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Linked Allocation

▪ Allocate linked-list of fixed-sized blocks

• Metadata: <starting block #>

• Each block contains pointer to next block

• Example: TOPS-10, Alto

• No external fragmentation

• File can grow easily

• Sequential access performance depends on data layout

• Poor _________ access performance

• Waste pointer per block (fragile -- it can be lost or damaged)

A A A B B C C B B C

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

File Allocation Table (FAT)

▪ Variation of linked allocation

• Keep linked-list information for all files in on-disk FAT

• FAT is cached in main memory to avoid disk seeks

• Metadata: <starting block #> + FAT

• Example: MS-DOS, Windows (FAT12, FAT16, FAT32)

• Improved random access performance

• Scalability with larger file systems?

A A A B B C C B B C
16 31

0 0 19 20 -1 0 23 26 25 29 27 -1 0 -1 0 0FAT

17 18 19 20 21 22 23 24 25 26 27 28 29 30

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Indexed Allocation

▪ Allocate fixed-size blocks for each file

• Metadata: An array of block pointers

• Each block pointer points to the corresponding data block

• No external fragmentation

• File can grow easily up to max file size

• Sequential access performance depends on data layout

• Random accesses supported

• Large overhead for metadata:

wasted space for unneeded pointers

(most files are small)

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Multi-level Indexing

▪ Variation of indexed allocation

• Dynamically allocate hierarchy of pointers to data blocks

• Metadata: small number of direct pointers + indirect pointers

• Example: Unix FFS, Linux Ext2/3

• Does not waste space for unneeded pointers

• Need to read indirect blocks of pointers

to calculate addresses (extra disk read)

– Keep indirect blocks cached in main memory

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Multi-level Indexing in VSFS

▪ Configurations

• An inode has 12 direct pointers and 1 single indirect pointer

• 4-byte disk address: 1024 pointers per 4KB block

• Max file size = (12 + 1024) * 4KB = 4144KB

other
metadata

12
Direct

pointers

Inode
(256 bytes)

0
1
2
3
4

…

1023

1024
Indirect
pointers

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Extent-based Allocation

▪ Allocate multiple contiguous regions (extents) per file

• Organize extents into multi-level tree structure (e.g., B+tree)

• Each leaf node: <logical block #, physical block #, extent size>

• Example: Linux Ext4

• Reasonable amount of external

fragmentation

• Still good sequential performance

• Some calculations needed for random

accesses

• Relatively small metadata overhead

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Directory Organization

▪ Common design

• Directory is a special file containing directory entries

• Large directories just use multiple data blocks

• Use bits in inode to distinguish directories from files

▪ Table (fixed length entries) or linear list:

• Requires a linear search to find an entry

▪ Tree:

• Entries may be sorted to decrease the average search time and to produce a

sorted directory listing easily

▪ Hash table:

• Fast, but should be scalable as the number of files increases

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

VSFS: Directory

▪ A linear list of <file name, inode number>

• Similar to Linux Ext2 directory

• Supports variable-sized names

• Example: /dir
– Inode number for /dir?

– Inode number for the root directory?

inode
number

record
length name

name
length

125

1212
122

120
1624

\0 \0\0.

o \0of
. \0\0.

a \0rb
o bof a r \0 \0

<deleted entry>

2

4
3

4
7

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Reading a File

▪ Open /foo/bar and read three blocks

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Writing a File

▪ Create /foo/bar and write three blocks

	슬라이드 1: File System Implementation
	슬라이드 2: Implementing a File System
	슬라이드 3: VSFS: Data Blocks
	슬라이드 4: VSFS: Inodes
	슬라이드 5: VSFS: Bitmaps
	슬라이드 6: VSFS: Superblock
	슬라이드 7: Allocation Strategies
	슬라이드 8: Contiguous Allocation
	슬라이드 9: Linked Allocation
	슬라이드 10: File Allocation Table (FAT)
	슬라이드 11: Indexed Allocation
	슬라이드 12: Multi-level Indexing
	슬라이드 13: Multi-level Indexing in VSFS
	슬라이드 14: Extent-based Allocation
	슬라이드 15: Directory Organization
	슬라이드 16: VSFS: Directory
	슬라이드 17: Reading a File
	슬라이드 18: Writing a File

