Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

Condition Variables
and Mutexes

Condition Variables and Mutex

" Yet another synchronization construct

= Condition variables can be also used without monitors in conjunction
with mutexes

* Think of a monitor as a language feature

* Under the covers, compiler knows about monitors

* Compiler inserts a mutex to control entry and exit of processes to the monitor's
procedures

* But can be done anywhere in procedure, at finer granularity

" With condition variables, the module methods may wait and signal on
independent conditions

Condition Variables

= Provide a mechanism to wait for events
* A condition variable (CV) is an explicit queue

* Threads can put themselves on CV when some state of execution is not met

= Used with mutexes

* A mutexisa lock: threads are blocked when it is held by another
thread

A mutex ensures mutual exclusion for a critical section

* Manipulating some condition related to a CV should be done inside the critical
section

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

CV Operations

* wait(cond t *cv, mutex t *mutex)
* Assumes mutex is held when wait() is called
* Puts the caller to sleep and releases mutex (atomically)
* When awoken, reacquires mutex before returning
* signal(cond t *cv)
* Wakes a single thread if there are threads waiting on cv

* Unlike semaphores, signal() is lost if there is no thread waiting for it

. semantics: thread continues after sending signal()

* broadcast(cond t *cv)
* Wakes all waiting threads

* If there are no waiting thread, just return doing nothing

4190.307: Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Pthreads Interface

* Mutexes and CVs are supported in Pthreads

pthread_mutex t m = PTHREAD MUTEX_ INITIALIZER;
pthread_cond t ¢ = PTHREAD COND INITIALIZER;

void wait_example() {
pthread_mutex_lock(&m);
pthread_cond_wait(&c, &m);
pthread_mutex_unlock(&m);

¥

void signal example() {
pthread mutex_ lock(&m);
pthread_cond_signal(&c);
pthread_mutex_unlock(&m);

¥

)

Joining Threads: An Initial Attempt

mutex_t m = MUTEX_INITIALIZER;

cond t ¢ = COND INITIALIZER; void thread exit() {
mutex_lock(&m);
void *child(void *arg) { cond_signal(&c);
thread _exit(); mutex_unlock(&m);
return NULL; }
}
void thread join() {
int main(int argc, char *argv[]) { mutex_lock(&nm);
thread_t p; cond wait(&c, &m);
thread create(&p, NULL, child, NULL); mutex_unlock(&m);
thread join(); }
return 0;

}

Joining Threads: Second Attempt

= Keep state in addition to CVs

mutex t m = MUTEX INITIALIZER;
cond t ¢ COND_INITIALIZER;
int done = 0

void *child(void *arg) {
thread exit();
return NULL;

¥

int main(int argc, char *argv[]) {
thread t p;
thread create(&p, NULL, child, NULL);
thread join();
return 9;

¥

void thread exit() {
done = 1;
cond_signal(&c);

¥

void thread join() {
mutex_lock(&m);
if (done == 0)
cond wait(&c, &m);
mutex_unlock(&m);

¥

Joining Threads: Third Attempt

= A

ways hold mutex while signaling

mutex_t m = MUTEX INITIALIZER;
cond_t c COND_INITIALIZER;
int done = 0

void *child(void *arg) {
thread exit();
return NULL;

¥

int main(int argc, char *argv[]) {
thread_t p;
thread create(&p, NULL, child, NULL);
thread_join();
return 0;

¥

void thread exit() {
mutex_lock(&m);
done = 1;
cond_signal(&c);
mutex_unlock(&m);

¥

void thread join() {
mutex_lock(&m);
while (done == 0)
cond wait(&c, &m);
mutex_unlock(&m);

¥

Bounded Buffer with CVs/Mutexes

mutex_t m;
cond_t notfull, notempty;
int in, out, count;

void produce(data) {
mutex_lock(&m);
while (count == N)
cond wait(¬_full, &m);

buffer[in] = data;
in = (in+l1) % N;
count++;

cond_signal(¬_empty);
mutex_unlock(&m);

void consume(data) {
mutex_lock(&m);
while (count == 0)
cond wait(¬_empty, &m);

data = buffer[out];
out = (out+l) % N;
count--;

cond_signal(¬_ full);
mutex_unlock(&m);

Using Broadcast

= Covering condition: when the signaler has no idea on which thread
should be woken up

" e.g., memory allocation:

mutex_t m; void *allocate (int size) {
cond t c; mutex_lock(&m);
int byteslLeft = MAX HEAP_SIZE; while (bytesLeft < size)

cond wait(&c, &m);
void free(void *p, int size) {

mutex_lock(&m); void *ptr = ...;
bytesLeft += size; bytesLeft -= size;
cond _broadcast(&c); mutex_unlock(&m);
mutex_unlock(&m); return ptr;

¥ ¥

10

Semaphores vs. Mutexes + CVs

* Both have same expressive power

" Implementing semaphores using mutexes and CVs:

typedef struct sema t {
int v;
cond t c;
mutex_t m;

} sema_t;

void sema init(sema_t *s,
S->V = V;
cond _init(&s->c);
mutex_init(&s->m);

¥

int v) {

void sema wait(sema_t *s) {
mutex_ lock(&s->m);
while (s->v <= 0)

cond wait(&s->c, &s->m);

S->V--;
mutex_unlock(&s->m);

}

void sema signal(sema_t *s) {
mutex_ lock(&s->m);
S->V++;
cond _signal(&s->c);
mutex_unlock(&s->m);

11

Xvé6: Sleeplock

void acquiresleep(struct sleeplock *1k) {
acquire(&lk->1k);
while (lk->locked) {
sleep(1lk, &lk->1k);

struct sleeplock {
uint locked;
struct spinlock 1lk;

}

* .

;::P ig?me, lk->locked = 1;

) pid; lk->pid = myproc()->pid;
5 release(&lk->1k);

}

void initsleeplock(struct sleeplock *1k,
char *name) A
initlock(&lk->1k, “sleep lock”);
lk->name = name;
lk->locked = 0;
lk->pid = 0;
}

void releasesleep(struct sleeplock *1k) {
acquire(&lk->1k);
lk->locked = 0;
lk->pid = 0;
wakeup(1k);
release(&lk->1k);

Xvé6: Sleep & Wakeup

void sleep(void *chan,

¥

struct spinlock *1k) {
struct proc *p = myproc();

if (1lk !'= &p->lock) {
acquire(&p->lock);
release(1lk);

}

p->chan = chan;

p->state = SLEEPING;

sched();

p->chan = 0;

if (lk !'= &p->lock) {
release(&p->1lock);
acquire(1lk);

}

void wakeup(void *chan) {

struct proc *p;

for (p = proc; p < &proc[NPROC]; p++) {
acquire(&p->lock);
if (p->state == SLEEPING &&
p->chan == chan) {
p->state = RUNNABLE;

}
release(&p->lock);

¥

13

Summary

* Disabling interrupts
* Only for the kernel on a single CPU

= Spinlocks

* Busy waiting, implemented using atomic instructions

= Semaphores
* Binary semaphore = mutex (= lock)
* Counting semaphore

= Monitors

* Language construct with condition variables

= Mutexes + condition variables
e Used in Pthreads

14

	슬라이드 1: Condition Variables and Mutexes
	슬라이드 2: Condition Variables and Mutex
	슬라이드 3: Condition Variables
	슬라이드 4: CV Operations
	슬라이드 5: Pthreads Interface
	슬라이드 6: Joining Threads: An Initial Attempt
	슬라이드 7: Joining Threads: Second Attempt
	슬라이드 8: Joining Threads: Third Attempt
	슬라이드 9: Bounded Buffer with CVs/Mutexes
	슬라이드 10: Using Broadcast
	슬라이드 11: Semaphores vs. Mutexes + CVs
	슬라이드 12: Xv6: Sleeplock
	슬라이드 13: Xv6: Sleep & Wakeup
	슬라이드 14: Summary

