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Thread and Process

▪ A thread is a lightweight unit of execution within a process

▪ A thread shares the process's resources but operating independently in 

terms of program counter, registers, stack, etc

▪ A process is a self-contained execution environment, typically 

comprising its own memory space, program code, and other resources

▪ More details are on lecture slide and github specification
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Project#5: Native Thread Support

▪ In this project, you have to

• 1. Prepare the xv6 kernel for native thread support (40 points)

• 2. Support user-level threads (50 points)

• 3. Submit design documents (10 points)

▪ Due date is 11:59(PM), December 22nd (Friday)
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1. Prepare for Native Thread Support

▪ We can view the "process" in the current xv6 kernel as the process 

with only one thread.

▪ Our goal is to make the process have more than one thread.

▪ Presently, struct proc in xv6 holds all the information pertinent to both 

a process and its thread

▪ Your task is to isolate the data structures required for each "thread" 

from those used by the "process“
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1. Prepare for Native Thread Support

▪ Struct thread

• Struct thread is a new data structure to store thread-specific information.

• Any process-wide data will remain in struct proc

• The struct proc will include a struct thread.

Original xv6 code of struct proc Modified xv6 code
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1. Prepare for Native Thread Support

▪ Modifying struct proc in this way will break the kernel code

▪ For example, the kernel must keep track of the state of each thread and the 

scheduler is responsible for selecting the next thread to be executed

▪ Your task is to modify the xv6 kernel code to ensure that it functions 

correctly even after struct thread has been separated from struct proc

▪ For this part, you can assume that the number of threads per 

process(NTH) is fixed to one

▪ Initially, the value of NTH is set to 4 in Makefile

▪ Any existing program should run correctly on the new xv6 kernel, 

including user-level program usertests
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2. Support user-level threads

▪ In this part, you have to modify your code to support

• 2.1. SNU Threads (sthreads) APIs

• 2.2. Trapframe Handling

• 2.3. Interactions with Process-oriented System Calls

• For part 2, please change the value of NTH to more than one

• NTH variable is in Makefile
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2.1. SNU Threads (sthreads) APIs

▪ Your task is to enable user-level threads (called sthreads)

by implementing following APIs

▪ The system call numbers for the following functions have been pre-

assigned, ranging from 24 to 27

• int sthread_self(void);

• int sthread_create(void (*func)(), void *arg);

• void sthread_exit(int retval);

• int sthread_join(int tid, int *retval);
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2.1. SNU Threads (sthreads) APIs

▪ int sthread_self(void);

• This function returns the thread ID of the calling thread.

• The return ID is represented as an integer type.

• This function always succeeds
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2.1. SNU Threads (sthreads) APIs

▪ int sthread_create(void (*func)(), void *arg);

• Creates a new thread within the calling process

• The thread begins execution at func() with arg provided as the sole argument 

to func()

• Thread ID (t->tid) of created thread is assigned using the following formula

– t->tid = p->pid * 100 + n

• p->pid is the process ID of the process to which the thread belongs.

• n is a monotonically increasing number that starts from 0 within that 
process.

• This function returns the thread ID of the newly created process on success

• This function returns -1 on error
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2.1. SNU Threads (sthreads) APIs

▪ void sthread_exit(int retval);

• This function terminates the calling thread

• This function returns a value via retval

• The return value retval is available to another thread in the same process 

that calls sthread_join()

• If the last thread in a process executes sthread_exit(), the associated process 

should also terminate, freeing up all resources allocated to that process.
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2.1. SNU Threads (sthreads) APIs

▪ int sthread_join(int tid, int *retval);

• This function waits for the thread specified by tid to terminate

• If that thread has already terminated, returns immediately

• If retval is not NULL (0), then sthread_join() copies the exit status of the target 

thread into the location pointed to by retval

• If multiple threads simultaneously try to join with the same thread, the results 

are undefined.

• This function returns 0 on success

• This function returns -1 if the target has already terminated or the target 

thread is not found
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2.2. Trapframe Handling

▪ The current xv6 uses a fixed memory region in the virtual address 

space to preserve the user context across traps

▪ However, when a process has multiple threads, it is essential to 

maintain the user context of each individual thread across traps

▪ Consequently, a significant challenge in implementing multi-thread 

support in xv6 is to ensure each thread operates with its own 

dedicated trapframe
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2.2. Trapframe Handling

▪ We solve this problem by saving the address of trapframe

• Saves the address of the corresponding trapframe to the sscratch register 

whenever a thread returns to the user space

• Slightly modified the usertrapret() function so that it passes the trapframe

address to the userret()

• At the very beginning of the userret() function, the address is saved to the 

sscratch register
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2.2. Trapframe Handling

▪ When a trap occurs in the user space, the control is transferred to the 

uservec() function

▪ Previously, xv6 has initialized a0 register with the constant 

TRAPFRAME after backing up the previous value of the a0 register to 

sscratch

▪ Now, the trapframe address for the currently running thread is stored 

in the sscratch register

▪ Therefore, we need to swap the value of the sscratch register and the 

a0 register atomatically
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2.2. Trapframe Handling

▪ If we execute the csrrw a0, sscratch, a0 instruction, the value in 

sscratch is put into a0 while the old value of a0 is stored in sscratch

simultaneously

▪ After this instruction, we can freely use the trapframe to save the user 

registers used by the current thread.

▪ All you need to do is to pass the correct trapframe address at the end 

of the usertrapret() function allocated for the thread currently
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2.3 Interactions with Process-oriented System Calls

▪ fork(): 

• If one of the threads invokes fork(), only the thread that made the call is 

duplicated in the new process, 

• That thread becomes the default thread in that process.

• exec(): 

• If one of the threads executes exec(), only the thread that initiated the call will 

survive, becoming the default thread in that process. 

• This thread starts its execution from the entry point of the new program, while 

all the other threads in the process are terminated.
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2.3 Interactions with Process-oriented System Calls

• exit(): 

• If any thread within a process calls exit(), all the threads are terminated, and 

the associated process is subsequently removed from the system. 

• A process can also be terminated when its last thread calls the sthread_exit() 

function. In this scenario, the behavior should be identical to that of the 

process executing exit(-1).

• kill(): 

• If any process is killed by another process via kill(), all the threads within the 

process are terminated, and the associated process is subsequently removed 

from the system.
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3. Design document (10 points)

▪ In this project, you need to submit a report explaining your 
implementation (in a single PDF file)

▪ These must be included in your report
• What information is maintained in the struct thread and why?

• Are there any new variables introduced in the struct proc and struct thread? 
Why?

• How are the trapframes, user stacks, and kernel stacks managed?

• Show the pseudocode for sthread_create(), sthread_exit(), sthread_join() 
and how to read the value returned by sthread_exit()

• If you modify the existing system calls such as fork(), exec(), exit(), kill(), wait(), 
etc., explain why

• What was the hardest part of this project?
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Skeleton Code

▪ You should work on the pa5 branch as follows:
$ git clone https://github.com/snu-csl/xv6-riscv-snu

$ cd xv6-riscv-snu

$ git checkout pa5

▪ Then, you have to set your STUDENTID in the Makefile

▪ The skeleton code includes four user-level programs 

▪ source code is available in ./user/thread1.c ~ ./user/thread4.c, respectively. 

▪ You can use these programs to test your implementation.
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Restrictions

▪ You can assume that the maximum value of NTH is 8
▪ NTH variable is in the Makefile

▪ Submitting either the unmodified or slightly modified xv6 code 

might allow you to pass the test cases in Part 1 of this project. 

▪ Any attempt to do so will result in a penalty score of -10 points

▪ TAs will manually review your code to ensure that your implementation 

is in line with the intended purpose of this project assignment.
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Restrictions

▪ Your implementation should work on multi-core systems.

• The number of CPUs is already set to 4 in the Makefile.

• If your implementation works only on a single core, 

you may receive only half of the points.

▪ Do not add any other system calls.

▪ You only need to modify those files in the ./kernel directory.

• Changes to other files will be ignored during grading.
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Tips

▪ Read xv6 book

• Chapter 2,3,4,6,7 to process management and trap handling in xv6.
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Submission

▪ Perform the make submit command to generate a compressed tar file

▪ Upload this tar file + report to the submission server

▪ The total number of submissions will be limited to 30

▪ Only the version marked FINAL will be considered 

▪ Please remove all the debugging outputs before you submit.
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Sample Output 1

▪ user/thread1.c

▪ There will be two threads, whose 

tids are 300 and 301, respectively
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Sample Output 1

▪ Thread 300 calls sthread_create(tmain, (void *)0xdeadbeef)

• Thread 300 creates new thread, thread 301

• Thread 300 passes the value 0xdeadbeef to thread 301

Thread 300

Thread 301

sthread_create(tmain, (void *)0xdeadbeef)

Process 3
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Sample Output 1

▪ Thread 300 calls sthread_join(tid, &ret)

• Thread 300 waits for the thread 301 to terminate

▪ Thread 301 sleeps

Thread 300

Thread 301

sthread_join(tid, &ret)

Process 3

sleep(1)
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Sample Output 1

▪ Thread 301 wakes up and calls printf

• Prints "tid 301: got 0xDEADBEEF"

Thread 300

Thread 301

sthread_join(tid, &ret)

Process 3

printf
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Sample Output 1

▪ Thread 301 calls sthread_exit(0x900dbeef)

• Thread 301 exits with the value 0x900dbeef

Thread 300

Thread 301

sthread_join(tid, &ret)

sthread_exit(0x900dbeef)

Process 3
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Sample Output 1

▪ Thread 300’s sthread_join(tid, &ret) returned 

• sthread_join returns 0

• sthread_join copies the exit status 0x900dbeef to the ret

Thread 300

Thread 301

sthread_join(tid, &ret)

sthread_exit(0x900dbeef)

Process 3
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Sample Output 1

▪ Thread 300 calls printf

• Prints "tid 300: got 0x900DBEEF"

Thread 300

Thread 301

sthread_exit(0x900dbeef)

Process 3 printf
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Sample Output 1

▪ Thread 300 calls exit(0);

• Process is terminated

exit(0);

Thread 300

Thread 301

sthread_exit(0x900dbeef)

Process 3
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Sample Output 2

▪ user/thread2.c

▪ There will be two threads, whose

tids are 300 and 301, respectively
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Sample Output 2

▪ Thread 300 calls sthread_create(tmain, 0)

• Thread 300 creates new thread, thread 301

• Thread 300 passes the value 0 to thread 301

Thread 300

Thread 301

sthread_create(tmain, 0)

Process 3
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Sample Output 2

▪ Thread 300 calls printf

• Prints "Thread 300 is exiting"

▪ Thread 301 sleeps

Thread 300

Thread 301

printf

sleep(10)

Process 3
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Sample Output 2

▪ Thread 300 calls sthread_exit(0)

• Thread 300 exits with the value 0

Thread 300

Thread 301

sthread_exit(0)

sleep(10)

Process 3
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Sample Output 2

▪ Thread 301 wakes up, and calls printf

• Prints "Thread 301 is exiting"

Thread 300

Thread 301

sthread_exit(0)

printf

Process 3
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Sample Output 2

▪ Thread 301 calls sthread_exit(0)

• Thread 301 is the last thread in a process, so process 3 is also terminated

Thread 300

Thread 301

sthread_exit(0)

sthread_exit(0)

Process 3
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Sample Output 3

▪ user/thread3.c

▪ There will be four threads, whose tids

are 300, 301, 302 and 303, respectively
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Sample Output 3

▪ Thread 300 calls sthread_create(tmain, 30)

• Thread 300 creates new thread, thread 301

• Thread 300 passes the value 30 to thread 301

Thread 300

Thread 301

sthread_create(tmain, (void *) 30)

Process 3
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Sample Output 3

▪ Thread 300 calls sthread_create(tmain, 10)

• Thread 300 creates new thread, thread 302

• Thread 300 passes the value 10 to thread 302

▪ Thread 301 sleeps

Thread 300

Thread 301

sthread_create(tmain, (void *) 30)

Thread 302

sleep(30)

Process 3
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Sample Output 3

▪ Thread 300 calls sthread_create(tmain, 20)

• Thread 300 creates new thread, thread 303

• Thread 300 passes the value 20 to thread 303

▪ Thread 302 sleeps

Thread 300

Thread 301

sthread_create(tmain, (void *) 30)

Thread 302

Thread 303

sleep(10)

sleep(30)

Process 3
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Sample Output 3

▪ Thread 300 calls printf

• Prints "Thread 300 is exiting"

▪ Thread 303 sleeps

Thread 300

Thread 301

printf

Thread 302

Thread 303

sleep(30)

sleep(10)

sleep(20)

Process 3
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Sample Output 3

▪ Thread 300 calls sthread_exit(0)

• Thread 300 exits with the value 0  

Thread 300

Thread 301

Thread 302

Thread 303

sleep(30)

sleep(10)

sleep(20)

sthread_exit(0)

Process 3
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Sample Output 3

▪ Thread 302 wakes up and calls printf

• Prints "Thread 302 is exiting"

▪ Thread 302 calls sthread_exit(0)

Thread 300

Thread 301

Thread 302

Thread 303

sleep(30)

sleep(20)

sthread_exit(0)

sthread_exit(0)

Process 3
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Sample Output 3

▪ Thread 303 wakes up and prints

• Prints "Thread 303 is exiting"

▪ Thread 303 calls sthread_exit(0);

Thread 300

Thread 301

Thread 302

Thread 303

sleep(30)

sthread_exit(0)

sthread_exit(0)

sthread_exit(0)

Process 3
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Sample Output 3

▪ Thread 301 wakes up and prints

• Prints "Thread 301 is exiting"

▪ Thread 301 calls sthread_exit(0);

• Thread 301 is the last thread in a process, so process is also terminated

Thread 300

Thread 301

Thread 302

Thread 303

sleep(30)

sthread_exit(0)

sthread_exit(0)

sthread_exit(0)

sthread_exit(0)

Process 3
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Sample Output 4

▪ user/thread4.c

▪ There will be two processes, process 3 and

process 4, whose pids are 3 and 4,

respectively  
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Sample Output 4

▪ Thread 300 calls fork()

• New process, process 4 is created

• Process 4’s default thread, thread 400 is also created. 

Thread 400

Process 4

Thread 300

fork()

Process 3
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Sample Output 4

▪ Thread 300 calls wait(&ret)

▪ Thread 400 calls sthread_create(tmain, 0)

• Thread 400 creates new thread, thread 401 and passes the value 0

Thread 400

Process 4

wait(&ret)

sthread_create(tmain, 0)

Thread 401

Thread 300

Process 3

Thread 300

Thread 400
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Sample Output 4

▪ Thread 400 runs an infinite loop

while(1)

Thread 400

Process 4

wait(&ret)

Thread 401

Thread 300

Process 3
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Sample Output 4

▪ Thread 401 calls exec(“ls”, args)

• Thread 400 is terminated

• Thread 401 runs the ls / command

while(1)

Thread 400

Process 4

wait(&ret)

Thread 401

Thread 300

Process 3

exec(“ls”, args)
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Sample Output 4

▪ Thread 401 executes ls, and calls exit(0)

• Process 4 terminates

• Process 3 receives exit status of process 4 in the ret variable

while(1)

Thread 400

Process 4

wait(&ret)

Thread 401

Thread 300

Process 3

exit(0)

user/ls.c
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Sample Output 4

▪ Thread 300 calls printf

• Prints "ret = 0"

▪ Process 3 is terminated

printf

while(1)

Thread 400

Process 4

Thread 401

Thread 300

Process 3

exit(0)
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Thank you!

▪ Don’t forget to read the detailed description
▪ https://github.com/snu-csl/os-pa5

▪ Since this is the last assignment, you may use all the remaining slip days
▪ You can use up to 3 slip days during this semester

▪ The weights for pa1 to pa5 are 1%, 2%, 7%, 15%, and 15%, respectively.

▪ Any questions?
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