Injae Kang
(abcinje@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

2023.11.09.

Project #4:
mmap () with Huge Pages

Pages and Huge Pages

* |n this project, you need to implement huge page allocation/deallocation
" Base page: 4KiB
* Huge page: 2MiB

* The size of 512 base pages is same as the size of a single huge page

* The new allocator is to support four functions as follows:
« void xkalloc();
« void kfree(void *pa);
- void xkalloc_huge();
« void kfree_huge(void =*pa);

Pages and Huge Pages

= Restriction

* You should maximize the number of

allocatable 2MiB frames

Unallocated 2MiB —

Memory Mapping

= mmap() system call creates a new mapping in the virtual address space

" You need to implement following system calls:
« void *mmap(void *addr, int length, int prot, int flags);
« int munmap(void *addr);

" We only consider anonymous mapping

" You don’t have to care about file-backed mapping

Shared Mapping

= mmap()

Virtual Address Space Physical Address Space
of Parent

Shared Mapping

= Parent writes Ox 100

* Assume that each mmap()-ed page is writable

0x100

0x100

\ 4

\ 4

Virtual Address Space Physical Address Space
of Parent

Shared Mapping

» fork()

0x100 0x100

A

0x100

\ 4

\ 4
A

Virtual Address Space Physical Address Space Virtual Address Space
of Parent of Child

Shared Mapping

= Child writes 0x200

* Assume that each mmap()-ed page is writable

0x200 0x200

A

0x200

\ 4

\ 4
A

Virtual Address Space Physical Address Space Virtual Address Space
of Parent of Child

Private Mapping

= mmap()

Virtual Address Space Physical Address Space
of Parent

Private Mapping

= Parent writes Ox 100

* Assume that each mmap()-ed page is writable

0x100

» 0x100

Virtual Address Space
of Parent

Physical Address Space

10

Private Mapping

» fork()

0x100

0x100

» 0x100 <

Virtual Address Space
of Parent

Physical Address Space

Virtual Address Space
of Child

11

Private Mapping

= Child reads the content
e Result: 0x100

0x100

0x100

A

0x100

\ 4

Virtual Address Space
of Parent

\ 4
A

Physical Address Space

Virtual Address Space
of Child

12

Private Mapping

= Child writes 0x200

* Assume that each mmap()-ed page is writable

0x100

Page Fault

0x100

A

0x100

\ 4

Virtual Address Space
of Parent

\ 4
A

Physical Address Space

Virtual Address Space
of Child

13

Private Mapping

= Child writes 0x200

* Assume that each mmap()-ed page is writable

Page Fault
0x100 0x100
» 0x100 <
Virtual Address Space Physical Address Space Virtual Address Space
of Parent of Child

The page fault is due to permission violation, because the page table entry indicates that the page is read-only,
although the page appears to be writable to the user application.

Private Mapping

" Page fault handling

* Copy-on-write

0x100

\ 4

0x100

0x100

Virtual Address Space
of Parent

\ 4
A

A

0x100

Physical Address Space

Virtual Address Space
of Child

15

Private Mapping

= Child writes 0x200 (Retry)

* Assume that each mmap()-ed page is writable

0x100 0x200
» 0x100
0x200 <
Virtual Address Space Physical Address Space Virtual Address Space

of Parent of Child

Cleanup

= All of the mmap () -ed regions should be unmapped on process
termination

* Memory unmapping does not always require memory deallocation
* When should we deallocate physical pages in case of shared mapping!?

* When should we deallocate physical pages in case of private mapping!?

17

Sv39

" xvb6 uses 39-bit address system called Sv39
= 3-level page table
* |t supports | GiB and 2MiB huge pages

* If a level 2 entry is a leaf, it represents an | GiB-sized huge page
* If alevel | entry is a leaf, it represents a 2MiB-sized huge page

* If alevel O entry is a leaf, it represents a 4KiB base page

18

Sv39 Page Table

PTE PTE PTE
PTE PTE PTE
satp | C——) —> —>
PTE PTE PTE
Level 2 Level 1 Level O
Reserved PPN[2] PPN[1] | PPN[O] | RsW |[D|A|G|U|X|W|[R|V
10 26 9 9 2 1 1111111

19

Sv39 Page Table Entry

Reserved

PPN[2]

PPN[1]

PPN[O]

RSW

DIA|IG|U|X|W|R |V

10

26

= Page table entry bits

D: Dirty bit
A:Access bit
G: Global bit
U: User bit
X: Execute bit
W:Write bit
R: Read bit
V:Valid bit

9

9

2

11111111

= |f X,W,and R are all 0, the PTE is a pointer to next level

20

Project #4

"= Tips
* Read Chap. 3 and 4 of the xv6 book to understand the virtual memory subsystem
and page-fault exceptions in xv6

21

http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf

Project #4

= Assumptions

* The range of the target virtual address in mmap () is from PHYSTOP to
MAXVA-0x10000000

 The maximum size in mmap () is limited to 64MiB
* Each process can have up to 4 memory-mapped regions

* The system can support up to 64 distinct memory-mapped regions in total

" You may assume that no test scenarios break the assumptions

22

Project #4

= Restrictions
* On exit() or exec(),all the memory-mapped regions should be unmapped
* Your implementation should work on multi-core systems
* Do not add any other system calls

* You only need to modify those files in the . /kernel directory except for
the . /kernel/ktest.c file

23

Project #4

= Skeleton Code

* You should work on the pa4 branch of the xv6-riscv-snu repository as follows:

* The pa4 branch has three user-level programs (mmaptestl ~ mmaptest3) which
can be built from . /user/mmaptestl.c ~ ./user/mmaptest3.c, respectively

24

Project #4

* Due
* [1:59 PM, November 25 (Saturday)

= Submission

* Run make submit command to generate a tarball
named xv6-pa4-{STUDENTID}.tar.gz in the xv6-riscv-snu directory

Upload the compressed file to the submission server

The total number of submissions for this project will be limited to 30

Only the version marked FINAL will be considered for the project score

In this project, you need to submit a design report

25

Using GDB with QEMU

GDB with QEMU

" |n the xv6-riscv-snu directory,
= Run make gemu-gdb to run QEMU
" |n another shell, run riscvé4-unknown-elf-gdb ./kernel/kernel

2 csl@sys snuackr > csl@syssnuackr

BEElEEE -/injae/xv6-Tiscv-snu % make gemu-gdb There is NO WARRANTY, to the extent permitted by law.
#%% Now run 'gdb' in another window. Type "show copying"” and "show warranty" for details.
gemu-system-riscv64 -machine virt -bios none -kernel kernel/kernel -m 128M -smp 4 -nog This GDB was configured as "--host=x86_64-pc-linux-gnu --target=riscv64-unknown-elf".
raphic -global virtio-mmio.force-legacy=false -drive file=fs.img,if=none,format=raw,id Type "show configuration” for configuration details.
=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.® -S -gdb tcp::26000 For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from kern rnel. ..
warning: File "/home/csl/injae/xv6-riscv-snu/.gdbinit" auto-loading has been declined
by yvour ‘auto-load safe-path' set to "$debugdir:$datadir/auto-load".
To enable execution of this file add
add-auto-load-safe-path /home/csl/injae/xv6-riscv-snu/.gdbinit
line to your configuration file "/home/csl/.gdbinit".
To completely disable this security protection add
set auto-load safe-path /
line to your configuration file "/home/csl/.gdbinit".
For more information about this security protection see the
"Auto-loading safe path" section in the GDB manual. E.g., run from the shell:
—--Type <RET> for more, g to quit, c to continue without paging—-
info "(gdb)Auto-loading safe path"
(gdb)

GDB with QEMU

= |n GDB, enter target remote :<port>
" You can find TCP port in the QEMU log

2 csl@sys snuackr > csl@syssnuackr

BEElEEE -/injae/xv6-Tiscv-snu % make gemu-gdb Type "show configuration” for configuration details.

#%% Now run 'gdb' in another window. For bug reporting instructions, please see:

gemu-system-riscv64 -machine virt -bios none -kernel kernel/kernel -m 128M -smp 4 -nog <http://www.gnu.org/software/gdb/bugs/>.

raphic —global virtio-mmio.force-legacy=false -drive file=fs.img,if=pone farmat=raw,id Find the GDB manual and other documentation resources online at:
=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.® -S -gdb tcp::26000 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from kern cernel. ..
warning: File "/home/csl/injae/xv6-riscv-snu/.gdbinit" auto-loading has been declined
by yvour ‘auto-load safe-path' set to "$debugdir:$datadir/auto-load".
To enable execution of this file add
add-auto-load-safe-path /home/csl/injae/xv6-riscv-snu/.gdbinit
line to your configuration file "/home/csl/.gdbinit".
To completely disable this security protection add
set auto-load safe-path /
line to your configuration file "/home/csl/.gdbinit".
For more information about this security protection see the
"Auto-loading safe path" section in the GDB manual. E.g., run from the shell:
—--Type <RET> for more, g to quit, c to continue without paging—-
info "(gdb)Auto-loading safe path"
(gdb) target remote :26000
Remote debugglng u51ng 126000

(gdb) I

GDB with QEMU

" The xvé virtual machine has stopped at 0x1000
(the very beginning of the text section)

= To continue, enter ¢ in GDB

2] al@sys.snuackr

EEESYE ~/injae/xv6-riscv-snu % make gemu-gdb

#%% Now run 'gdb' in another window.

gemu-system-riscv64 -machine virt -bios none -kernel kernel/kernel -m 128M -smp 4 -nog
raphic -global virtio-mmio.force-legacy=false -drive file=fs.img,if=none,format=raw,id
=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.® -S -gdb tcp::26000

xv6 kernel is booting

hart 3 starting
hart 2 starting
hart 1 starting
init: starting sh

s

> csl@syssnuackr

<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from kerne rnel...
warning: File "/home/csl/injae/xv6-riscv-snu/.gdbinit" auto-loading has been declined
by your "auto-load safe-path' set to "$debugdir:$datadir/auto-load".
To enable execution of this file add
add-auto-load-safe-path /home/csl/injae/xv6-riscv-snu/.gdbinit
line to your configuration file "/home/csl/.gdbinit".
To completely disable this security protection add
set auto-load safe-path /
line to your configuration file "/home/csl/.gdbinit".
For more information about this security protection see the
"Auto-loading safe path" section in the GDB manual. E.g., run from the shell:
—-Type <RET> for more, g to quit, c to continue without paging—-
info "(gdb)Auto-loading safe path"
(gdb) target remote :26000
Remote debugging using :26000

(gdb) c
Continuing.

29

GDB with QEMU

* To stop again, enter Ctr1-C in GDB

* Then the xv6 virtual machine stops immediately

2 csl@sys snuackr > csl@syssnuackr

BEElEEE -/injae/xv6-Tiscv-snu % make gemu-gdb For help, type "help".

#%% Now run 'gdb' in another window. Type "apropos word" to search for commands related to "word"...

gemu-system-riscv64 -machine virt -bios none -kernel kernel/kernel -m 128M -smp 4 -nog Reading symbols from kernel/kernel...

raphic -global virtio-mmio.force-legacy=false -drive file=fs.img,if=none,format=raw,id warning: File "/home/csl/injae/xv6-riscv-snu/.gdbinit" auto-loading has been declined

=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.® -S -gdb tcp::26000 by your "auto-load safe-path' set to "$debugdir:$datadir/auto-load".
To enable execution of this file add

xv6 kernel is booting add-auto-load-safe-path /home/csl/injae/xv6-riscv-snu/.gdbinit
line to your configuration file "/home/csl/.gdbinit".

hart 3 starting To completely disable this security protection add

hart 2 starting set auto-load safe-path /

hart 1 starting line to your configuration file "/home/csl/.gdbinit".

init: starting sh For more information about this security protection see the

L | "Auto-loading safe path" section in the GDB manual. E.g., run from the shell:
--Type <RET> for more, q to quit, c to continue without paging—-—
info "(gdb)Auto-loading safe path"
(gdb) target remote :26000
Remote debugging using :26000
) 101000 in ?? ()

Continuing.

AC

Thread 1 received signal SIGINT, Interrupt.
mycpu () at kernel/proc.c:79

GDB with QEMU

" Let’s set a breakpoint at exec ()
* Enter b exec in GDB

2] al@sys.snuackr

Jae/ f-Tiscv-snu % make gemu-gdb

#%% Now Tun gdb' in another window.

gemu-system-riscv64 -machine virt -bios none -kernel kernel/kernel -m 128M -smp 4 -nog
raphic -global virtio-mmio.force-legacy=false -drive file=fs.img,if=none,format=raw,id
=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.® -S -gdb tcp::26000

xv6 kernel is booting

hart 3 starting
hart 2 starting
hart 1 starting
init: starting sh

s

> csl@syssnuackr

Reading symbols from kern

warning: File "/home/csl/injae/xv6-riscv-snu/.gdbinit" auto-loading has been declined

by your "auto-load safe-path' set to "$debugdir:$datadir/auto-load".
To enable execution of this file add

add-auto-load-safe-path /home/csl/injae/xv6-riscv-snu/.gdbinit
line to your configuration file "/home/csl/.gdbinit".
To completely disable this security protection add

set auto-load safe-path /
line to your configuration file "/home/csl/.gdbinit".
For more information about this security protection see the

"Auto-loading safe path" section in the GDB manual. E.g., run from the shell:

—-Type <RET> for more, g to quit, c to continue without paging—-
info "(gdb)Auto-loading safe path"

(gdb) target remote :26000

Remote debugging using 126000

(gdb) @

Continuing.

AC

Thread 1 received 51gnal
mycpu () at kernel/

79 {

(gdb) b exec

Breakpoint 1 at

(gdb)

file kernel/e

31

GDB with QEMU

= Enter ¢ in GDB to resume the xv6 machine

2 csl@sys snuackr > csl@syssnuackr

jae/xv6-riscv-snu % make gemu-gdb by your ‘auto-load safe-path' set to "$debugdir:$datadir/auto-load".
#%% Now run 'gdb' in another window. To enable execution of this file add
gemu-system-riscv64 -machine virt -bios none -kernel kernel/kernel -m 128M -smp 4 -nog add-auto-load-safe-path /home/csl/injae/xv6-riscv-snu/.gdbinit
raphic -global virtio-mmio.force-legacy=false -drive file=fs.img,if=none,format=raw,id line to your configuration file "/home/csl/.gdbinit".
=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.® -S -gdb tcp::26000 To completely disable this security protection add
set auto-load safe-path /

xv6 kernel is booting line to your configuration file "/home/csl/.gdbinit".

For more information about this security protection see the
hart 3 starting "Auto-loading safe path" section in the GDB manual. E.g., run from the shell:
hart 2 starting --Type <RET> for more, g to quit, c to continue without paging—-
hart 1 starting info "(gdb)Auto-loading safe path"
init: starting sh (gdb) target remote :26000

L | Remote debugging using :26000

(gdb) c

Continuing.

AC

Thread 1 received signal SIGINT, Interrupt.

mycpu () at kernel/proc.c:79

79 {

(gdb) b exec

Breakpoint 1 at @)04ecd: file kernel/ c.c, line 24.
(gdb) c

Continuing.

32

GDB with QEMU

= Run 1s command in the xv6 machine

* Then the xv6 machine hits the breakpoint and stops right before
starting exec () function

2 csl@sys snuackr > csl@syssnuackr

BEElEEE -/injae/xv6-Tiscv-snu % make gemu-gdb set auto-load safe-path /
#%% Now run 'gdb' in another window. line to your configuration file "/home/csl/.gdbinit".
gemu-system-riscv64 -machine virt -bios none -kernel kernel/kernel -m 128M -smp 4 -nog For more information about this security protection see the
raphic -global virtio-mmio.force-legacy=false -drive file=fs.img,if=none,format=raw,id "Auto-loading safe path" section in the GDB manual. E.g., run from the shell:
=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.® -S -gdb tcp::26000 --Type <RET> for more, g to quit, c to continue without paging—-
info "(gdb)Auto-loading safe path"
xv6 kernel is booting (gdb) target remote :26000
Remote debugging using :26000
hart 3 starting
hart 2 starting (gdb) c
hart 1 starting Continuing.
init: starting sh AC
$ 1s Thread 1 received signal SIGINT, Interrupt.
| mycpu () at kernel/proc.c:79
79 {
(gdb) b exec
Breakpoint 1 at 0x80004ec@: file kernel/ c.c, line 24.
(gdb) c
Continuing.
[Switching to Thread 1.2]

Thread 2 hit Breakpoint 1, exec (path=pa =0x3fffffofea "1s",
ar lentry=0x3fffff9e@0) at ker 3k

33

More about GDB

* To learn GDB in detail, search for GDB on Google

* There are many useful videos about GDB in YouTube

= [|T)O| 2|5AEMS] GDB £-25617]

34

https://www.youtube.com/watch?v=qltDyFxiNzk

Thank you!

