
Injae Kang 
(abcinje@snu.ac.kr)

Systems Software & 
Architecture Lab.

Seoul National University

2023.11.09.

Project #4:

mmap() with Huge Pages



2

▪ In this project, you need to implement huge page allocation/deallocation

▪ Base page: 4KiB

▪ Huge page: 2MiB

▪ The size of 512 base pages is same as the size of a single huge page

▪ The new allocator is to support four functions as follows:
• void *kalloc();
• void kfree(void *pa);
• void *kalloc_huge();
• void kfree_huge(void *pa);



3

▪ Restriction

• You should maximize the number of 

allocatable 2MiB frames

···

···

···

···

···

···

···

···

···

Unallocated 2MiB



4

▪ mmap() system call creates a new mapping in the virtual address space

▪ You need to implement following system calls:
• void *mmap(void *addr, int length, int prot, int flags);
• int munmap(void *addr);

▪ We only consider anonymous mapping

▪ You don’t have to care about file-backed mapping



5

Virtual Address Space
of Parent

Physical Address Space

▪ mmap()



6

▪ Parent writes 0x100

• Assume that each mmap()-ed page is writable

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space



7

▪ fork()

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space

0x100

Virtual Address Space
of Child



8

▪ Child writes 0x200

• Assume that each mmap()-ed page is writable

0x200

0x200

Virtual Address Space
of Parent

Physical Address Space

0x200

Virtual Address Space
of Child



9

Virtual Address Space
of Parent

Physical Address Space

▪ mmap()



10

▪ Parent writes 0x100

• Assume that each mmap()-ed page is writable

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space



11

▪ fork()

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space

0x100

Virtual Address Space
of Child



12

▪ Child reads the content

• Result: 0x100

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space

0x100

Virtual Address Space
of Child



13

▪ Child writes 0x200

• Assume that each mmap()-ed page is writable

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space

0x100

Virtual Address Space
of Child

Page Fault



14

▪ Child writes 0x200

• Assume that each mmap()-ed page is writable

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space

0x100

Virtual Address Space
of Child

Page Fault

The page fault is due to permission violation, because the page table entry indicates that the page is read-only, 
although the page appears to be writable to the user application. 



15

▪ Page fault handling

• Copy-on-write

0x100

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space

0x100

Virtual Address Space
of Child



16

▪ Child writes 0x200 (Retry)

• Assume that each mmap()-ed page is writable

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space

0x200

0x200

Virtual Address Space
of Child



17

▪ All of the mmap()-ed regions should be unmapped on process 

termination

▪ Memory unmapping does not always require memory deallocation

• When should we deallocate physical pages in case of shared mapping?

• When should we deallocate physical pages in case of private mapping?



18

▪ xv6 uses 39-bit address system called Sv39

▪ 3-level page table

▪ It supports 1GiB and 2MiB huge pages

• If a level 2 entry is a leaf, it represents an 1GiB-sized huge page

• If a level 1 entry is a leaf, it represents a 2MiB-sized huge page

• If a level 0 entry is a leaf, it represents a 4KiB base page



19

PTE
PTE
…

PTE

PTE
PTE
…

PTE

PTE
PTE
…

PTE

satp

Level 2 Level 1 Level 0

Reserved

10

PPN[2]

26

PPN[1]

9

PPN[0]

9

RSW

2

D

1

A

1

G

1

U

1

X

1

W

1

R

1

V

1



20

▪ Page table entry bits
• D: Dirty bit

• A: Access bit

• G: Global bit

• U: User bit

• X: Execute bit

• W: Write bit

• R: Read bit

• V: Valid bit

▪ If X, W, and R are all 0, the PTE is a pointer to next level

Reserved

10

PPN[2]

26

PPN[1]

9

PPN[0]

9

RSW

2

D

1

A

1

G

1

U

1

X

1

W

1

R

1

V

1



21

▪ Tips

• Read Chap. 3 and 4 of the xv6 book to understand the virtual memory subsystem 

and page-fault exceptions in xv6

http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf


22

▪ Assumptions

• The range of the target virtual address in mmap() is from PHYSTOP to
MAXVA-0x10000000

• The maximum size in mmap() is limited to 64MiB

• Each process can have up to 4 memory-mapped regions

• The system can support up to 64 distinct memory-mapped regions in total

▪ You may assume that no test scenarios break the assumptions



23

▪ Restrictions

• On exit() or exec(), all the memory-mapped regions should be unmapped

• Your implementation should work on multi-core systems

• Do not add any other system calls

• You only need to modify those files in the ./kernel directory except for 

the ./kernel/ktest.c file



24

▪ Skeleton Code

• You should work on the pa4 branch of the xv6-riscv-snu repository as follows:

• The pa4 branch has three user-level programs (mmaptest1 ~ mmaptest3) which 

can be built from ./user/mmaptest1.c ~ ./user/mmaptest3.c, respectively

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa4



25

▪ Due

• 11:59 PM, November 25 (Saturday)

▪ Submission

• Run make submit command to generate a tarball

named xv6-pa4-{STUDENTID}.tar.gz in the xv6-riscv-snu directory

• Upload the compressed file to the submission server

• The total number of submissions for this project will be limited to 30

• Only the version marked FINAL will be considered for the project score

• In this project, you need to submit a design report



Using GDB with QEMU



27

▪ In the xv6-riscv-snu directory,

▪ Run make qemu-gdb to run QEMU

▪ In another shell, run riscv64-unknown-elf-gdb ./kernel/kernel



28

▪ In GDB, enter target remote :<port>

▪ You can find TCP port in the QEMU log



29

▪ The xv6 virtual machine has stopped at 0x1000

(the very beginning of the text section)

▪ To continue, enter c in GDB

(Running)



30

▪ To stop again, enter Ctrl-C in GDB

▪ Then the xv6 virtual machine stops immediately

(Stopped)



31

▪ Let’s set a breakpoint at exec()

▪ Enter b exec in GDB

(Stopped)



32

▪ Enter c in GDB to resume the xv6 machine

(Running)



33

▪ Run ls command in the xv6 machine

▪ Then the xv6 machine hits the breakpoint and stops right before 

starting exec() function

(Stopped)



34

▪ To learn GDB in detail, search for GDB on Google

▪ There are many useful videos about GDB in YouTube

▪ [JTJ의 리눅스탐험] GDB 활용하기

https://www.youtube.com/watch?v=qltDyFxiNzk


Thank you!


