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▪ In this project, you need to implement huge page allocation/deallocation

▪ Base page: 4KiB

▪ Huge page: 2MiB

▪ The size of 512 base pages is same as the size of a single huge page

▪ The new allocator is to support four functions as follows:
• void *kalloc();
• void kfree(void *pa);
• void *kalloc_huge();
• void kfree_huge(void *pa);
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▪ Restriction

• You should maximize the number of 

allocatable 2MiB frames
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Unallocated 2MiB



4

▪ mmap() system call creates a new mapping in the virtual address space

▪ You need to implement following system calls:
• void *mmap(void *addr, int length, int prot, int flags);
• int munmap(void *addr);

▪ We only consider anonymous mapping

▪ You don’t have to care about file-backed mapping
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▪ Parent writes 0x100

• Assume that each mmap()-ed page is writable
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▪ fork()
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▪ Child writes 0x200

• Assume that each mmap()-ed page is writable
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▪ Parent writes 0x100

• Assume that each mmap()-ed page is writable
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▪ fork()
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▪ Child reads the content

• Result: 0x100

0x100

0x100

Virtual Address Space
of Parent

Physical Address Space

0x100

Virtual Address Space
of Child



13

▪ Child writes 0x200

• Assume that each mmap()-ed page is writable
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▪ Child writes 0x200

• Assume that each mmap()-ed page is writable
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Page Fault

The page fault is due to permission violation, because the page table entry indicates that the page is read-only, 
although the page appears to be writable to the user application. 
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▪ Page fault handling

• Copy-on-write
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▪ Child writes 0x200 (Retry)

• Assume that each mmap()-ed page is writable
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▪ All of the mmap()-ed regions should be unmapped on process 

termination

▪ Memory unmapping does not always require memory deallocation

• When should we deallocate physical pages in case of shared mapping?

• When should we deallocate physical pages in case of private mapping?
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▪ xv6 uses 39-bit address system called Sv39

▪ 3-level page table

▪ It supports 1GiB and 2MiB huge pages

• If a level 2 entry is a leaf, it represents an 1GiB-sized huge page

• If a level 1 entry is a leaf, it represents a 2MiB-sized huge page

• If a level 0 entry is a leaf, it represents a 4KiB base page
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▪ Page table entry bits
• D: Dirty bit

• A: Access bit

• G: Global bit

• U: User bit

• X: Execute bit

• W: Write bit

• R: Read bit

• V: Valid bit

▪ If X, W, and R are all 0, the PTE is a pointer to next level
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▪ Tips

• Read Chap. 3 and 4 of the xv6 book to understand the virtual memory subsystem 

and page-fault exceptions in xv6

http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf
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▪ Assumptions

• The range of the target virtual address in mmap() is from PHYSTOP to
MAXVA-0x10000000

• The maximum size in mmap() is limited to 64MiB

• Each process can have up to 4 memory-mapped regions

• The system can support up to 64 distinct memory-mapped regions in total

▪ You may assume that no test scenarios break the assumptions
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▪ Restrictions

• On exit() or exec(), all the memory-mapped regions should be unmapped

• Your implementation should work on multi-core systems

• Do not add any other system calls

• You only need to modify those files in the ./kernel directory except for 

the ./kernel/ktest.c file
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▪ Skeleton Code

• You should work on the pa4 branch of the xv6-riscv-snu repository as follows:

• The pa4 branch has three user-level programs (mmaptest1 ~ mmaptest3) which 

can be built from ./user/mmaptest1.c ~ ./user/mmaptest3.c, respectively

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa4
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▪ Due

• 11:59 PM, November 25 (Saturday)

▪ Submission

• Run make submit command to generate a tarball

named xv6-pa4-{STUDENTID}.tar.gz in the xv6-riscv-snu directory

• Upload the compressed file to the submission server

• The total number of submissions for this project will be limited to 30

• Only the version marked FINAL will be considered for the project score

• In this project, you need to submit a design report



Using GDB with QEMU
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▪ In the xv6-riscv-snu directory,

▪ Run make qemu-gdb to run QEMU

▪ In another shell, run riscv64-unknown-elf-gdb ./kernel/kernel
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▪ In GDB, enter target remote :<port>

▪ You can find TCP port in the QEMU log
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▪ The xv6 virtual machine has stopped at 0x1000

(the very beginning of the text section)

▪ To continue, enter c in GDB

(Running)
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▪ To stop again, enter Ctrl-C in GDB

▪ Then the xv6 virtual machine stops immediately

(Stopped)
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▪ Let’s set a breakpoint at exec()

▪ Enter b exec in GDB

(Stopped)
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▪ Enter c in GDB to resume the xv6 machine

(Running)
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▪ Run ls command in the xv6 machine

▪ Then the xv6 machine hits the breakpoint and stops right before 

starting exec() function

(Stopped)
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▪ To learn GDB in detail, search for GDB on Google

▪ There are many useful videos about GDB in YouTube

▪ [JTJ의 리눅스탐험] GDB 활용하기

https://www.youtube.com/watch?v=qltDyFxiNzk


Thank you!


