
Project #3:

BTS(Brain Teased

Scheduler)

Heejae Kim
(adpp00@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

2023.10.17

2

Reminder: Late Submission Policy

▪ You can use up to 3 slip days during this semester

▪ You should explicitly declare the number of slip days you want to use

on the QnA board right after each submission

▪ Once slip days have been used, they cannot be canceled later

• 25% of the credit will be deducted for every single day delay

(if you are not using slip days for this project)

3

XV6 Process States

▪ XV6 process states (in proc.h)

• enum procstate

{UNUSED, USED, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

▪ UNUSED: not used

▪ USED: initialized for new process

▪ SLEEPING: wait for I/O, wait() or sleep()

▪ RUNNABLE: ready to run

▪ RUNNING: now running

▪ ZOMBIE: exited and waiting for parent to call wait()

4

XV6 Scheduler

▪ Xv6 multiplexes by switching each CPU from one process to another

▪ The xv6 scheduler implements a simple scheduling policy

• Runs each process in turn

• This is called Round Robin

▪ Each CPU calls scheduler()

▪ Scheduler never returns.

5

XV6 Scheduler

▪ Steps involved in switching from one user process to another

• 1. User-kernel transition to the old’s process’s kernel thread

• 2. Context switch to the current CPU’s scheduler thread

• 3. Context switch to a new process’s kernel thread

• 4. Trap return to the user-level process

6

XV6 Code : scheduler()

▪ In kernel/proc.c

• void scheduler(void)

▪ Scheduler loops, doing

• 1. Choose a RUNNABLE process p to run

• 2. Mark process p’s state to RUNNING

• 3. Set the per-CPU current process

• 4. Context switch (start running process p)

• 5. If process is done running, go to 1.

▪ Scheduler never returns

7

XV6 Code : sched()

▪ In kernel/proc.c

• void sched(void)

▪ Called from exit(), sleep(), yield()

▪ Context switch (return to scheduler)

8

XV6 Code : swtch()

▪ In kernel/swtch.S

• void swtch(struct context *old, struct context *new)

▪ Save current registers in old, load from new

9

Project#3: BTS(Brain Teased Scheduler)

▪ In this project, you have to

• 1. Implement the nice() system call (10 points)

• 2. Implement the BTS(Brain Teased Scheduler) algorithm (80 points)

• 3. Submit design documents (10 points)

▪ Due date is 11:59(PM), October 31st (Tuesday)

10

1. Implement the nice() system call

▪ int nice(int pid, int value)

• Sets the current nice value of the process with pid to value

• The range of nice value is from -3 to 3 (7 levels)

• The nice value of the init process is set to zero.

• When a process is created, its nice value is inherited from the parent by default.

• If pid is positive, then the nice value of the process with the specified pid is

changed.

• If pid is zero, then the nice value of the calling process is changed.

11

1. Implement the nice() system call

▪ int nice(int pid, int value) returns

• On success, zero is returned

• Returns -1 on error. The possible error conditions are as follows.

– pid is negative

– There is no valid process that has pid

– The value is outside the range of [-3,3]

▪ The system call number for nice() is already assigned to 23

12

2. Implement the BTS algorithm

▪ The timeslice is just one timer tick in BTS

• The kernel scheduler is invoked on every timer tick.

▪ The kernel has a predefined prio_ratio[] table

• This table is used to compute the virtual deadline

• prio_ratio[] table’s entry corresponds to the nice level

13

2. Implement the BTS algorithm

▪ When a process is put into the runqueue, modify its virtual deadline

• Process P’s Virtual deadline = current tick + prio_ratio[NICE_TO_PRIO(P’s nice value)]

▪ The scheduler determines the next process to execute among the

RUNNABLE processes based on the following priorities:

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

14

2. Implement the BTS algorithm

▪ The running process is NOT preempted until the end of its timeslice

(even if a process with a lower virtual deadline is created or wakes up)

▪ When the current process is blocked, its virtual deadline is not changed

▪ When the process is awakened and resumes execution, the virtual

deadline remains unadjusted

▪ When the nice value of a RUNNABLE process is changed, its virtual

deadline is immediately changed

▪ If there are no RUNNABLE processes, the behavior of the scheduler is

the same as that of the current round-robin scheduler

15

3. Design document

▪ In this project, you need to submit a report explaining your

implementation (in a single PDF file)

▪ These must be included in your report

• Brief summary of modifications you have made

• The details about your implementation of

– The nice() system call

– The BTS algorithm

– The results of running schedtest3 with the analysis of your result

– xv6.log file ($make qemu-log)

– graph.png file ($make png)

16

Skeleton Code

▪ You should work on the pa3 branch as follows:

$ git clone https://github.com/snu-csl/xv6-riscv-snu

$ cd xv6-riscv-snu

$ git checkout pa3

▪ Then, you have to set your STUDENTID in the Makefile

▪ Also, you should install python numpy, pandas, and matplotlib packages.

$ sudo apt install python3-numpy python3-pandas python3-matplotlib

17

Skeleton Code

▪ In this project, getticks() system call is included in your skeleton code

▪ int getticks(int pid)

• getticks() returns the number of ticks used by the process pid

• If pid is positive, return the number of ticks used by process pid is returned

• If pid is zero, return the number of ticks used by the calling process

▪ Two new fields, nice and ticks, are added in the proc structure

• In kernel/proc.h, struct proc

18

Restrictions

▪ The number of CPUs is already set to 1 in the Makefile.

▪ Your implementation should pass the following test programs

(These test programs are already available on xv6)

• schedtest1

• schedtest2

• schedtest3

▪ Do not add any system calls other than nice() and getticks()

▪ You only need to modify those files in the ./kernel directory

• Changes to other source code will be ignored during grading.

▪ Please remove all the debugging outputs before you submit

19

Tips

▪ You may read & modify

• kernel/proc.c

• kernel/proc.h

• kernel/sysproc.c

• and other files if necessary

▪ Read xv6 book

• Chapter 7 to understand the scheduling subsystem of xv6

20

Submission

▪ Perform the make submit command to generate a compressed tar file

▪ Upload this tar file + report to the submission server

▪ The total number of submissions will be limited to 30

▪ Only the version marked FINAL will be considered

▪ It takes a long time to grading, so please wait for a few minutes

21

Example 1: Same nice value

▪ Two processes P0 and P1 have same nice value, -2

▪ Prio_ratio of P0 and P1 will be prio_ratio[-2 + 3] = 2

▪ P0 has a lower pid than P1

2

2

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

22

Example 1: Same nice value

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

2

2

P0

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

23

Example 1: Same nice value

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (1) + prio_ratio(2) = 3

2

2

3

2

P0

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

24

Example 1: Same nice value

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

2

2

3

2

P0 P1

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

25

Example 1: Same nice value

▪ Update the virtual deadline of P1

▪ Virtual deadline of P1: current tick (2) + prio_ratio(2) = 4

2

2

3

2

3

4

P0 P1

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

26

Example 1: Same nice value

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

2

2

3

2

3

4

P0 P1 P0

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

27

Example 1: Same nice value

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (3) + prio_ratio(2) = 5

2

2

3

2

3

4

5

4

P0 P1 P0

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

28

Example 1: Same nice value

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

2

2

3

2

3

4

5

4

P0 P1 P0 P1

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

29

Example 1: Same nice value

▪ Update the virtual deadline of P1

▪ Virtual deadline of P1: current tick (4) + prio_ratio(2) = 6

2

2

3

2

3

4

5

4

5

6

P0 P1 P0 P1

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

30

Example 1: Same nice value

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

2

2

3

2

3

4

5

4

5

6

P0 P1 P0 P1 P0

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

31

Example 1: Same nice value

▪ And so on…

2

2

3

2

3

4

5

4

5

6

7

6

7

8

9

8

9

10

11

10

11

12

13

12

P0 P1 P0 P1 P0 P1 P0 P1 P0 P1 P0 P1

0 1 2 3 4 5 6 7 8 9 10 11tick

Virtual Deadline P0

Virtual Deadline P1

Scheduled
Process

32

Example 2. Three Processes

▪ Process P0, P1, P2 have the nice values of -3, -2, and 0 respectively

▪ Prio_ratio of P0, P1, P2 will be 1, 2, 5

0 1 2 3 4 5 6 7 8 9 10 11tick

1Virtual Deadline P0

2Virtual Deadline P1

5Virtual Deadline P2

Scheduled Process

33

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1Virtual Deadline P0

2Virtual Deadline P1

5Virtual Deadline P2

P0Scheduled Process

34

Example 2. Three Processes

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (1) + prio_ratio(1) = 2

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2Virtual Deadline P0

2 2Virtual Deadline P1

5 5Virtual Deadline P2

P0Scheduled Process

35

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2Virtual Deadline P0

2 2Virtual Deadline P1

5 5Virtual Deadline P2

P0 P0Scheduled Process

36

Example 2. Three Processes

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (2) + prio_ratio(1) = 3

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3Virtual Deadline P0

2 2 2Virtual Deadline P1

5 5 5Virtual Deadline P2

P0 P0Scheduled Process

37

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3Virtual Deadline P0

2 2 2Virtual Deadline P1

5 5 5Virtual Deadline P2

P0 P0 P1Scheduled Process

38

Example 2. Three Processes

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (3) + prio_ratio(2) =5

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3Virtual Deadline P0

2 2 2 5Virtual Deadline P1

5 5 5 5Virtual Deadline P2

P0 P0 P1Scheduled Process

39

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3Virtual Deadline P0

2 2 2 5Virtual Deadline P1

5 5 5 5Virtual Deadline P2

P0 P0 P1 P0Scheduled Process

40

Example 2. Three Processes

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (4) + prio_ratio(1) = 5

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5Virtual Deadline P0

2 2 2 5 5Virtual Deadline P1

5 5 5 5 5Virtual Deadline P2

P0 P0 P1 P0Scheduled Process

41

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5Virtual Deadline P0

2 2 2 5 5Virtual Deadline P1

5 5 5 5 5Virtual Deadline P2

P0 P0 P1 P0 P0Scheduled Process

42

Example 2. Three Processes

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (5) + prio_ratio(1) = 6

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6Virtual Deadline P0

2 2 2 5 5 5Virtual Deadline P1

5 5 5 5 5 5Virtual Deadline P2

P0 P0 P1 P0 P0Scheduled Process

43

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6Virtual Deadline P0

2 2 2 5 5 5Virtual Deadline P1

5 5 5 5 5 5Virtual Deadline P2

P0 P0 P1 P0 P0 P1Scheduled Process

44

Example 2. Three Processes

▪ Update the virtual deadline of P1

▪ Virtual deadline of P1: current tick (6) + prio_ratio(2) = 8

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6Virtual Deadline P0

2 2 2 5 5 5 8Virtual Deadline P1

5 5 5 5 5 5 5Virtual Deadline P2

P0 P0 P1 P0 P0 P1Scheduled Process

45

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6Virtual Deadline P0

2 2 2 5 5 5 8Virtual Deadline P1

5 5 5 5 5 5 5Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2Scheduled Process

46

Example 2. Three Processes

▪ Update the virtual deadline of P2

▪ Virtual deadline of P2: current tick (7) + prio_ratio(5) = 11

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6Virtual Deadline P0

2 2 2 5 5 5 8 8Virtual Deadline P1

5 5 5 5 5 5 5 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2Scheduled Process

47

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6Virtual Deadline P0

2 2 2 5 5 5 8 8Virtual Deadline P1

5 5 5 5 5 5 5 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2 P0Scheduled Process

48

Example 2. Three Processes

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (8) + prio_ratio(1) = 9

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6 9Virtual Deadline P0

2 2 2 5 5 5 8 8 8Virtual Deadline P1

5 5 5 5 5 5 5 12 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2 P0Scheduled Process

49

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6 9Virtual Deadline P0

2 2 2 5 5 5 8 8 8Virtual Deadline P1

5 5 5 5 5 5 5 12 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2 P0 P1Scheduled Process

50

Example 2. Three Processes

▪ Update the virtual deadline of P1

▪ Virtual deadline of P1: current tick (9) + prio_ratio(2) = 11

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6 9 9Virtual Deadline P0

2 2 2 5 5 5 8 8 8 11Virtual Deadline P1

5 5 5 5 5 5 5 12 12 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2 P0 P1Scheduled Process

51

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6 9 9Virtual Deadline P0

2 2 2 5 5 5 8 8 8 11Virtual Deadline P1

5 5 5 5 5 5 5 12 12 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2 P0 P1 P0Scheduled Process

52

Example 2. Three Processes

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (10) + prio_ratio(1) = 11

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6 9 9 11Virtual Deadline P0

2 2 2 5 5 5 8 8 8 11 11Virtual Deadline P1

5 5 5 5 5 5 5 12 12 12 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2 P0 P1 P0Scheduled Process

53

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6 9 9 11Virtual Deadline P0

2 2 2 5 5 5 8 8 8 11 11Virtual Deadline P1

5 5 5 5 5 5 5 12 12 12 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2 P0 P1 P0 P0Scheduled Process

54

Example 2. Three Processes

▪ Update the virtual deadline of P0

▪ Virtual deadline of P0: current tick (11) + prio_ratio(1) = 12

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6 9 9 11 12Virtual Deadline P0

2 2 2 5 5 5 8 8 8 11 11 11Virtual Deadline P1

5 5 5 5 5 5 5 12 12 12 12 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2 P0 P1 P0 P0Scheduled Process

55

Example 2. Three Processes

• 1. Process with the minimum virtual deadline

• 2. The last process (which runs immediately before)

• 3. Process with the lower nice value

• 4. Process with the lower pid

0 1 2 3 4 5 6 7 8 9 10 11tick

1 2 3 3 5 6 6 6 9 9 11 12Virtual Deadline P0

2 2 2 5 5 5 8 8 8 11 11 11Virtual Deadline P1

5 5 5 5 5 5 5 12 12 12 12 12Virtual Deadline P2

P0 P0 P1 P0 P0 P1 P2 P0 P1 P0 P0 P1Scheduled Process

56

Example 3. schedtest3

▪ In user/schedtest3.c

▪ Creates three CPU-intensive child processes

▪ Measures the number of ticks used by

those processes every 60 ticks

▪ Their nice values changing every 300 ticks

57

Example 3. schedtest3

▪ Tick 0: schedtest forks 3 times, calls loginit(), and calls sleep(60)
– nice value of P1, P2, P3 is 0,0,0, respectively

tick 0 0 0 0 0 0 1 2 3 4

schedtest fork() fork() fork()
loginit

()
sleep
(60)

VD P1 5 5 5 5 5

VD P2 5 5 5 5

VD P3 5 5 5

Scheduled
Process

sched
test

sched
test

sched
test

sched
test

sched
test

sleeping…

5

58

Example 3. schedtest3

▪ After schedtest calls sleep(60), P1, P2, P3 will be scheduled.

Tick 0 0 0 0 0 0 1 2 3 4

schedtest fork() fork() fork()
loginit

()
sleep
(60)

VD P1 5 5 5 5 5 5 6 6 6 9

VD P2 5 5 5 5 5 5 7 7 7

VD P3 5 5 5 5 5 5 8 8

Scheduled
Process

sched
test

sched
test

sched
test

sched
test

sched
test

P1 P2 P3 P1 P2

sleeping…

5

9

10

8

P3

59

Example 3. schedtest3

▪ Tick 60: schedtest wakes up, prints log, and sleep(60) again…
– nice value of P1, P2, P3 is 0,0,0, respectively

tick 60 60 60

schedtest print
log

sleep
(60)

sleeping...

VD P1 63 63

VD P2 64 64

VD P3 65 65

Scheduled
Process

sched
test

sched
test

60

Example 3. schedtest3

▪ And then…

tick 60 60 60 61 62 63 64 65 66 67

schedtest print
log

sleep
(60)

sleeping...

VD P1 63 63 63 66 66 66 69 69 69 72

VD P2 64 64 64 64 67 67 67 70 70 70

VD P3 65 65 65 65 65 68 68 68 71 71

Scheduled
Process

sched
test

sched
test

P1 P2 P3 P1 P2 P3 P1 P2

68

72

73

71

P3

61

Example 3. schedtest3

▪ Tick 300: Schedtest wakeup, prints log, change nice value and sleep…
– nice value of P1, P2, P3 changes to -3,0,3, respectively

tick 299 300 300 300 300 300 300

schedtest sleep
ing…

print
log

nice
(pid1)

nice
(pid2)

nice
(pid3)

sleep
(60)

sleeping...

VD P1 303 303 301 301 301 301

VD P2 304 304 304 305 305 305

VD P3 302 305 305 305 311 311

Scheduled
Process

P3
sched
test

sched
test

sched
test

sched
test

sched
test

62

Example 3. schedtest3

▪ And then…

tick 299 300 300 300 300 300 300 301 302 303 304

schedtest sleep
ing…

print
log

nice
(pid1)

nice
(pid2)

nice
(pid3)

sleep
(60)

sleeping...

VD P1 303 303 301 301 301 301 301 302 303 304 305

VD P2 304 304 304 305 305 305 305 305 305 305 305

VD P3 302 305 305 305 311 311 311 311 311 311 311

Scheduled
Process

P3
sched
test

sched
test

sched
test

sched
test

sched
test

P1 P1 P1 P1 P1

63

Example 3. schedtest3

▪ If you successfully implement BTS,

you should be able to get a result like the following:

64

Example 3. schedtest3

▪ In order to generate a graph, you should run xv6 using the

make qemu-log command that saves output into the file named xv6.log

▪ And then run the make png command to generate the graph.png file

…

65

Example 3. schedtest3

▪ If everything goes fine, you will get the following graph:

66

Thank you!

▪ Any questions?

	슬라이드 1: Project #3: BTS(Brain Teased Scheduler)
	슬라이드 2: Reminder: Late Submission Policy
	슬라이드 3: XV6 Process States
	슬라이드 4: XV6 Scheduler
	슬라이드 5: XV6 Scheduler
	슬라이드 6: XV6 Code : scheduler()
	슬라이드 7: XV6 Code : sched()
	슬라이드 8: XV6 Code : swtch()
	슬라이드 9: Project#3: BTS(Brain Teased Scheduler)
	슬라이드 10: 1. Implement the nice() system call
	슬라이드 11: 1. Implement the nice() system call
	슬라이드 12: 2. Implement the BTS algorithm
	슬라이드 13: 2. Implement the BTS algorithm
	슬라이드 14: 2. Implement the BTS algorithm
	슬라이드 15: 3. Design document
	슬라이드 16: Skeleton Code
	슬라이드 17: Skeleton Code
	슬라이드 18: Restrictions
	슬라이드 19: Tips
	슬라이드 20: Submission
	슬라이드 21: Example 1: Same nice value
	슬라이드 22: Example 1: Same nice value
	슬라이드 23: Example 1: Same nice value
	슬라이드 24: Example 1: Same nice value
	슬라이드 25: Example 1: Same nice value
	슬라이드 26: Example 1: Same nice value
	슬라이드 27: Example 1: Same nice value
	슬라이드 28: Example 1: Same nice value
	슬라이드 29: Example 1: Same nice value
	슬라이드 30: Example 1: Same nice value
	슬라이드 31: Example 1: Same nice value
	슬라이드 32: Example 2. Three Processes
	슬라이드 33: Example 2. Three Processes
	슬라이드 34: Example 2. Three Processes
	슬라이드 35: Example 2. Three Processes
	슬라이드 36: Example 2. Three Processes
	슬라이드 37: Example 2. Three Processes
	슬라이드 38: Example 2. Three Processes
	슬라이드 39: Example 2. Three Processes
	슬라이드 40: Example 2. Three Processes
	슬라이드 41: Example 2. Three Processes
	슬라이드 42: Example 2. Three Processes
	슬라이드 43: Example 2. Three Processes
	슬라이드 44: Example 2. Three Processes
	슬라이드 45: Example 2. Three Processes
	슬라이드 46: Example 2. Three Processes
	슬라이드 47: Example 2. Three Processes
	슬라이드 48: Example 2. Three Processes
	슬라이드 49: Example 2. Three Processes
	슬라이드 50: Example 2. Three Processes
	슬라이드 51: Example 2. Three Processes
	슬라이드 52: Example 2. Three Processes
	슬라이드 53: Example 2. Three Processes
	슬라이드 54: Example 2. Three Processes
	슬라이드 55: Example 2. Three Processes
	슬라이드 56: Example 3. schedtest3
	슬라이드 57: Example 3. schedtest3
	슬라이드 58: Example 3. schedtest3
	슬라이드 59: Example 3. schedtest3
	슬라이드 60: Example 3. schedtest3
	슬라이드 61: Example 3. schedtest3
	슬라이드 62: Example 3. schedtest3
	슬라이드 63: Example 3. schedtest3
	슬라이드 64: Example 3. schedtest3
	슬라이드 65: Example 3. schedtest3
	슬라이드 66: Thank you!

