
Injae Kang 
(abcinje@snu.ac.kr)

Systems Software & 
Architecture Lab.

Seoul National University

2023.09.26.

Project #2: System Calls



2

▪ User applications can access the operating system kernel

in a restricted way

▪ The interfaces that allow user applications to request services

from the operating system kernel

▪ The operating system kernel does the requested task

on behalf of user applications



3

▪ Machine Mode

• CPU starts in machine mode

▪ Supervisor Mode

• Allowed to execute privileged instructions

– Enable/Disable interrupts

– Modify the page table base register

– …

• The operating system kernel runs in supervisor mode

▪ User Mode

• User processes run in user mode



4

▪ User applications execute the ecall instruction to invoke system calls

▪ E.g., fork()

fork:
li a7, SYS_fork
ecall
ret

(Kernel Mode)

Syscall Routine



5

ecall
User Space

Kernel Space

uservec usertrap() syscall() usertrapret() userret

devintr()

next

instr

scause



6

▪ Start in supervisor mode

▪ Save registers values to trapframe

▪ Initialize kernel stack pointer

▪ Install the kernel page table

▪ Jump to usertrap()



7

▪ Install the kernel trap vector

▪ Save user program counter

▪ Handle an interrupt, exception, or system call

depending on the value of scause register

▪ Call usertrapret() when it is done



8

▪ Install the user trap vector

▪ Set privilege mode to user

▪ Restore user program counter

▪ Jump to userret



9

▪ Switch to the user page table

▪ Restore registers from trapframe

▪ Return to user mode



10

▪ satp

• Pointer to page table

▪ scause

• Event which caused a trap

▪ sepc

• Program counter when a trap occurs

▪ sscratch

• Backup of a0 register

▪ stvec

• Pointer to trap vector



11

▪ Your task is to implement a new system call named ntraps()

▪ It returns the number of system calls or interrupts invoked

▪ int ntraps(int type);

• ntraps(0) returns the total number of system calls made for all cores

(including the current ntraps() syscall)

• ntraps(1) returns the total number of device interrupts received by all cores

(including timer interrupts)

• ntraps(2) returns the total number of timer interrupts received by all cores

• For the other type values, it returns -1



12

▪ You may want to consult:

• kernel/defs.h

– Function definitions

• kernel/syscall.{c, h}

– General system call handling

• kernel/sysproc.c

– Several system call implementations

• kernel/trap.c

– Trap handling

• kernel/spinlock.{c, h}

– Spinlock implementation

• and other files if necessary



13

▪ Tips

• Read Chap. 4.1 of the xv6 book to understand RISC-V’s privileged modes

and trap handling mechanism

(More detailed information can be found in the RISC-V Privileged Architecture 

manual)

• Read Chap. 4.2 ~ 4.5 of the xv6 book to see how traps are handled in xv6

• Read Chap. 5.1 ~ 5.4 of the xv6 book to learn about hardware interrupts

http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf
http://csl.snu.ac.kr/courses/4190.307/2023-2/riscv-privileged-20211203.pdf
http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf
http://csl.snu.ac.kr/courses/4190.307/2023-2/book-riscv-rev3.pdf


14

▪ Restrictions

• Each count should be initialized to 0 on boot

• Do not change the system call number for ntraps(), which is already assigned to 22

• You only need to change the files in the kernel directory

• Do not change the kernel/start.c file

• The implementation must behave correctly even on multi-core systems



15

▪ Skeleton Code

• You should work on the pa2 branch of the xv6-riscv-snu repository as follows:

• The pa2 branch has a user-level utility program named ntraps,

which can be built from the user/ntraps.c file

$ git clone https://github.com/snu-csl/xv6-riscv-snu
$ git checkout pa2



16

▪ Due

• 11:59 PM, October 8 (Sunday)

▪ Submission

• Run the make submit command to generate a tarball

named xv6-pa2-{STUDENTID}.tar.gz in the xv6-riscv-snu directory

• Upload the compressed file to the submission server

• The total number of submissions for this project will be limited to 30

• Only the version marked FINAL will be considered for the project score

• In this project, you do not need to submit a report



Thank you!


