Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2023

Architectural Support
for OS

Computer System Organization

CPU

disks

SIS

disk
controller

mouse keyboard printer ~ monitor
frrmereeers oo\

USB controller gipiics

adapter

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

memory

oS

Issue #1:1/0O

* How to perform |/Os efficiently?

* 1/O devices and CPU can execute concurrently

controller

Each device controller is in charge of a particular device type

Each device has a local buffer

CPU issues specific commands to /O devices

CPU moves data between main memory and local buffers

= CPU is a precious resource; it should be freed from time-consuming
tasks
* Checking whether the issued command has been completed or not

* Moving data between main memory and device buffers

Interrupts

= How does the kernel notice an I/O has finished?

o Disk drive
L ®
i .
* Hardware interrupt registers
_buffer
o 2 ® =
% %
“Do homework!y “Do homework!?
OK ______________ Ilol<-"
%‘ P
P N Interrupt Disk
% controller controller
NQL ™
VS o “I am done!” .
P PRec

Interrupt Handling

= Preserves the state of the CPU
* |n a fixed location
* |n a location indexed by the device ID

* On the system stack

" Determines the type

* Polling

* Vectored interrupt system
" Transfers control to the

interrupt service routine (ISR) or
interrupt handler

12/

Dispatch
to handler

Execute
the handler

€@ interrugt

- current’instruction

next instruction

8 interrupt handler

(4

Return from
interrupt

Data Transfer Modes
= (PIO)

* CPU is involved in moving data between |/O devices and memory

* By special I/O instructions vs. by memory-mapped I/O
* e.g., keyboard, mouse, ...

* DMA (Direct Memory Access)

* Used for high-speed I/O devices to transmit information at close to memory
speeds

* Device controller transfers blocks of data from the local buffer directly to main
memory (or vice versa) without CPU intervention

* Only an interrupt is generated per block
e DMA controller oversees the overall data transfer

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Disk I/O Example

8™ Gen DDR4 2xDIMMs per Channel
Intel® Core™ Up to 2666 MHZ!

Processors

Intel® UHD Graphics

DDR4 2xDIMMs per Channel
Up to 2666 MHz"

© ack @) interrupt

cammand

@ notify

A

Intel® Z370

Chipset

A

g queue command & ack

@ DMA setup @ perform disk read

(sp1)

Issue #2: Protection

* How to prevent user applications from harming the system!?
* What if an application accesses disk drives directly!?
* What if an application executes the HLT instruction?

HLT—Halt

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode

F4 HLT NP Valid Valid Halt

Description

Stops instruction execution and places the processor in a HALT state. .

Protected Instructions

= Protected or instructions

* The ability to perform certain tasks that cannot be done from user mode

* Direct /O access
— e.g., in/ out instructions in x86

* Accessing system registers
— Control registers
— System table locations (e.g., interrupt handler table)
— Setting special “mode bits”, etc.

* Memory state management
— Page table updates, page table base address, TLB loads, etc.

e HLT instruction in x86

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

CPU Modes of Operation

" Kernel mode vs. user mode

* How does the CPU know if a protected instruction can be executed?
* The architecture must support at least two modes of operation:
kernel and user mode

— 4 privilege levels in x86_64: Ring0>1>2>3

— 4 privilege levels in ARM: EL3 > EL2 > EL| > ELO oS

— 3 privilege levels in RISC-V: Machine > Supervisor > User
* Mode is set by a status bit in a protected register N

— 1A-32: Current Privilege Level (CPL) in CS register

— ARM: Mode field in CPSR register

Least privileged

Ring 1

Most pTviIeged

Device drivers

* Protected instructions can only be executed in the corresponding
privileged level

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Issue #3: Servicing Requests

* How to ask services to the OS?
* How can an application read a file if it cannot access disk drives?

* Even a“printf()” call requires hardware access

* User programs must ask the OS to do something privileged

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

11

System Calls

= OS defines a set of system calls
* Programming interface to the services provided by OS
* OS protects the system by rejecting illegal requests
* OS may impose a quota on a certain resource

* OS may consider fairness while sharing a resource

= A system call is a procedure call

* System call routines are in the OS code

* Executed in the kernel mode

* On entry, user mode > kernel mode switch

* On exit, CPU mode is changed back to the user mode

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

12

POSIX vs.Win32

Process
Management

File
Management

File System
Management

fork
waitpid
execve
exit
kill
open
close
read
write
lseek
stat
chmod
mkdir
rmdir
link
unlink
chdir
mount

CreateProcess
WaitForSingleObject
(none)

ExitProcess

(none)

CreateFile
CloseHandle
ReadFile

WriteFile
SetFilePointer
GetFileAttibutesEx
(none)
CreateDirectory
RemoveDirectory
(none)

DeleteFile
SetCurrentDirectory
(none)

Create a new process (CreateProcess = fork + exec)
Wait for a process to exit

Execute a new program

Terminate execution

Send a signal

Create a file or open an existing file
Close a file

Read data from a file

Write data to a file

Move the file pointer

Get various file attributes

Change the file access permission
Create a new directory

Remove an empty directory

Make a link to a file

Destroy an existing file

Change the current working directory
Mount a file system

Exceptional Events

" |nterrupts

* Generated by hardware devices
— Triggered by a signal in INTR or NMI pins (x86_64)

* Asynchronous

" Exceptions

* Generated by software executing instructions
— Unintentional: Divide-by-zero, ...
— Intentional: syscall instruction in x86_ 64 or ecall instruction in RISC-V

* Synchronous

* Exception handling is same as interrupt handling

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

14

Exceptions in x86_ 64

* Intentional
* System call traps, breakpoint traps, special instructions, ...

e Return control to “next’ instruction

= Faults
* Unintentional but possibly recoverable
* Page faults (recoverable), protection faults (unrecoverable), ...
* Either re-executing faulting (“current”) instruction or abort

* Unintentional and unrecoverable (parity error, machine check, ...)

* Abort the current program

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

15

OS Trap

* There must be a special “trap” instruction that:

Causes an exception, which invokes a kernel handler

Passes a parameter indicating which system call to invoke

Saves caller’s state (registers, mode bits)

Returns to user mode when done with restoring its state

OS must verify caller’s parameters (e.g., pointers)

Examples:
SYSCALL instruction (x86_64)
ECALL instruction (RISC-V)

User process

User mode
User process Perform Return from .
executing system call system call (mOde bit = 1)
AN A
N\ /
N\ /
@_aba return
Kernel mode bit =0 mode bit = 1 Kernel mode

Execute system call

(mode bit = 0)

16

Implementing System Calls

= count

User space

Kernel space

= read(fd, buf, 512);

@D call read()

@ trap to

main:

read:

the kern%

mv ae, <fd>
mv al, <buf>
1i a2, 512
call read

1i
ecall

€ store fd to a0
@ store buf to al
€@ store 512 to a2

@ return to caller

@ store read syscall # to a7

ret

© return from trap

\

\

Dispatch

@ o
find read jump to
handler handler

read syscall
handler

)

User program

Clibrary

17

Typical (Monolithic) OS Structure

User Application

C Library (libc) User space

System Call Interface

Kernel space

Hardware Platform

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Issue #4: Control

* How to take the control of the CPU back from the running program!?

* Cooperative approach

* Each application periodically transfers the control of the CPU to OS by calling
various system calls
* A special system call can be used just to release the CPU (e.g.,yield())

e Can be used when

* What if a process ends up in an infinite loop!?
(due to a bug or with a malicious intent)

19

Timers

" A non-cooperative approach
* Use a hardware timer that generates a periodic interrupt

* The timer interrupt transfers control back to OS

* The OS preloads the timer with a time to interrupt

e |Oms for Linux 2.4, Ims for Linux 2.6, 4ms for Linux 5.5

e |Oms for xvé

* The timer is privileged
* Only the OS can load it

20

Issue #5: Memory Protection

* How can we protect memory!?

* Unlike the other hardware resources, we allow applications to access memory
directly without OS intervention.Why?

* From malicious users:
OS must protect user applications from each other

* For integrity and security:
OS must also protect itself from user applications

21

Simplest Memory Protection

* Use base and limit registers
= Base and limit registers are loaded by OS before starting an application
* CPU generates an exception if the memory address is out of bound

* Can be used in a simple embedded environment

Prog A

\ 4

base reg

limit reg \

Prog B

Prog C

Virtual Memory

* Modern CPUs are equipped with memory management hardware
* MMU (Memory Management Unit)

= MMU provides more sophisticated memory protection mechanisms
* Virtual memory

* Paging: page tables, page protection, TLBs
* Segmentation: segment tables, segment protection

* Manipulation of MMU is a privileged operation

23

Issue #6: Synchronization

* How to coordinate concurrent activities?

* What if multiple concurrent streams access the shared data!?

* Interrupt can occur at any time and may interfere with the interrupted code

LOAD R1 €& Mem[X]
ADD R1 €& R1, #1

STORE R1 > Mem[X]

LOAD R1 € Mem[X]
ADD R1 € R1, #1
STORE R1 > Mem[X]

* Turn off/on interrupts!?

24

Atomic Instructions

= Requires special atomic instructions
* Read-Modify-Write (e.g., INC, DEC)
Test-and-Set

Compare-and-Swap
LOCK prefix in x86_64

LL (Load Locked) & SC (Store Conditional) in MIPS

= RISC-V“A” extension
* LR (Load Reserved) & SC (Store Conditional) instructions

* AMO (Atomic Memory Operation) instructions
— Swap, integer add, bitwise AND/OR/XOR, integer max/min (signed/unsigned)

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

25

Summary

* The functionality of an OS is limited by architectural features
* Multiprocessing on MS-DOS/8086?

* The structure of an OS can be simplified by architectural support

* Interrupt, DMA, atomic instructions, etc.

* Most proprietary OSes were developed with the certain architecture in
mind
* SunOS/Solaris for SPARC
* IBM AIX for Power/PowerPC
* HP-UX for PA-RISC

26

	슬라이드 1: Architectural Support for OS
	슬라이드 2: Computer System Organization
	슬라이드 3: Issue #1: I/O
	슬라이드 4: Interrupts
	슬라이드 5: Interrupt Handling
	슬라이드 6: Data Transfer Modes
	슬라이드 7: Disk I/O Example
	슬라이드 8: Issue #2: Protection
	슬라이드 9: Protected Instructions
	슬라이드 10: CPU Modes of Operation
	슬라이드 11: Issue #3: Servicing Requests
	슬라이드 12: System Calls
	슬라이드 13: System Calls Example
	슬라이드 14: Exceptional Events
	슬라이드 15: Exceptions in x86_64
	슬라이드 16: OS Trap
	슬라이드 17: Implementing System Calls
	슬라이드 18: Typical (Monolithic) OS Structure
	슬라이드 19: Issue #4: Control
	슬라이드 20: Timers
	슬라이드 21: Issue #5: Memory Protection
	슬라이드 22: Simplest Memory Protection
	슬라이드 23: Virtual Memory
	슬라이드 24: Issue #6: Synchronization
	슬라이드 25: Atomic Instructions
	슬라이드 26: Summary

