
Locks

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2023

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

The Classic Example

▪ Withdrawing money from a bank account

• Suppose you and your girl (or boy) friend share a bank account with a balance of

1,000,000won

• What happens if both go to separate ATM machines and simultaneously withdraw

100,000won from the account?

int withdraw(account, amount)
{

balance = get_balance(account);
balance = balance - amount;
put_balance(account, balance);
return balance;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

The Classic Example: Problem

▪ The execution of the two threads can be interleaved, assuming

preemptive scheduling:

balance = get_balance(account);
balance = balance - amount;

balance = get_balance(account);
balance = balance - amount;
put_balance(account, balance);

put_balance(account, balance);

Context
switch

Context
switch

Execution
sequence
as seen by

CPU

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

A Real Example

extern long g;

void inc() {
g++;

}

ld a0, 0(s1)
addi a0, a0, 1
sd a0, 0(s1)
ret

Thread T1

ld a0, 0(s1)
addi a0, a0, 1

sd a0, 0(s1)

Thread T2

ld a0, 0(s1)
addi a0, a0, 1
sd a0, 0(s1)

context switch

context switch

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Sharing Resources

▪ Local variables are not shared among threads

• Refer to data on the stack

• Each thread has its own stack

• Never pass/share/store a pointer to a local variable on another thread’s stack

▪ Global variables are shared among threads

• Stored in static data segment, accessible by any thread

▪ Dynamic objects are shared among threads

• Stored in the heap, shared through the pointers

▪ Also, processes can share memory (shmem)

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Synchronization Problem

▪ Concurrency leads to non-deterministic results

• Two or more concurrent threads accessing a shared resource create a _________

condition

• The output of the program is not deterministic; it varies from run to run even with

same inputs, depending on timing

• Hard to debug (“Heisenbugs”)

▪ We need synchronization mechanisms for controlling access to shared

resources

• Synchronization restricts the concurrency

• Scheduling is not under programmer’s control

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Concurrency in the Kernel

User
Space

Kernel

Hardware

system call handlers

interrupt handlers background
kernel threads

...

...

... ...

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Critical Section

▪ A critical section is a piece of code that accesses a shared resource,

usually a variable or data structure

▪ Need ______________ for critical sections

• Execute the critical section atomically (all-or-nothing)

• Only one thread at a time can execute in the critical section

• All other threads are forced to wait on entry

• When a thread leaves a critical section, another can enter

ld a0, 0(s1)
addi a0, a0, 1
sd a0, 0(s1)

critical section

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Locks

▪ A lock is an object (in memory) that provides mutual exclusion with the

following two operations:

• acquire(): wait until lock is free, then grab it

• release(): unlock and wake up any thread waiting in acquire()

▪ Using locks

• Lock is initially free

• Call acquire() before entering a critical section, and release() after leaving it

• acquire() does not return until the caller holds the lock

• On acquire(), a thread can spin (spinlock) or block (mutex)

• At most one thread can hold a lock at a time

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Using Locks

int withdraw(account, amount)
{
acquire(lock);
balance = get_balance(account);
balance = balance - amount;
put_balance(account, balance);
release(lock);
return balance;

}

critical
section

A
S1
S2
S3
R

Thread T1

Thread T2

A S1 S2 S3 R

A S1 S2 S3 R

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Requirements for Locks

▪ Correctness

• Mutual exclusion: only one thread in critical section at a time

• _________ (deadlock-free): if several threads want to enter the critical section,

must allow one to proceed

• Bounded waiting (_____________): must eventually allow each waiting thread to

enter

▪ Fairness

• Each thread gets a fair chance at acquiring the lock

▪ Performance

• Time overhead for a lock without and with contentions (possibly on multiple

CPUs)?

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

An Initial Attempt
▪ An initial implementation of a spinlock

▪ Does this work?

struct lock { int held = 0; }

void acquire(struct lock *l) {
while (l->held);
l->held = 1;

}

void release(struct lock *l) {
l->held = 0;

}

The caller “busy-waits”,
or spins for locks

to be released

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Implementing Locks

▪ Software-only algorithms

• Dekker’s algorithm (1962)

• Peterson’s algorithm (1981)

• Lamport’s Bakery algorithm for more than two processes (1974)

▪ Hardware atomic instructions

• Test-And-Set

• Compare-And-Swap

• Load-Linked (LL) and Store-Conditional (SC)

• Fetch-And-Add

▪ Controlling interrupts

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Software-only Algorithm
▪ The second attempt to implement spinlocks
• Note: each load and store instruction is atomic

▪ Does this work?

int interested[2];

void acquire(int process) {
int other = 1 – process;
interested[process] = TRUE;
while (interested[other]);

}

void release(int process) {
interested[process] = FALSE;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Peterson’s Algorithm

▪ Solves the critical section problem for two processes

int turn;
int interested[2];

void acquire(int process) {
int other = 1 – process;
interested[process] = TRUE;
turn = other;
while (interested[other] && _______________);

}

void release(int process) {
interested[process] = FALSE;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Bakery Algorithm (1)

▪ Multiple-process solution

• Before entering its critical section, process receives a sequence number.

• Holder of the smallest number enters the critical section

• If processes Pi and Pj receive the same number, if i < j, then Pi is served first; else Pj is

served first.

• The numbering scheme always generates numbers in increasing order of

enumeration; i.e., 1,2,3,3,3,4,4,5…

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Bakery Algorithm (2)

int number[N];
int choosing[N];

#define EARLIER(a,b) \\
((number[a] < number[b]) || \\
(number[a] == number[b] && \\
(a) < (b)))

int Findmax () {
int i;
int max = number[0];
for (i = 1; i < N; i++)

if (number[i] > max)
max = number[i];

return max;
}

void acquire (int me) {
int other;
choosing[me] = TRUE;
number[me] = Findmax() + 1;
choosing[me] = FALSE;
for (other=0; other<N; other++)
{

while (choosing[other]);
while (number[other] &&

EARLIER(other, me));
}

}

void release (int me) {
number[me] = 0;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Test-And-Set

▪ Atomic instructions

• read-modify-write operations guaranteed to be executed “atomically”

▪ Test-And-Set instruction

• Returns the old value of a memory location while simultaneously updating it to the

new value

• e.g., xchg in x86 (amoswap in RISC-V): exchange memory with register

int TestAndSet(int *v, int new) {
int old = *v;
*v = new;
return old;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Using Test-And-Set

▪ A simple spinlock using Test-And-Set instruction

• Refer to spinlock.h and spinlock.c in xv6

struct lock { int held = 0; }

void acquire(struct lock *l) {
while (l->held);
l->held = 1;

}

void release(struct lock *l) {
l->held = 0;

}

struct lock { int held = 0; }

void acquire(struct lock *l) {
while (TestAndSet(&l->held, 1));

}

void release(struct lock *l) {
l->held = 0;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Locks with Bounded Waiting

struct lock { int value = 0; }
int waiting[N];

void acquire(struct lock *l,
int me)

{
int key;

waiting[me] = 1;
key = 1;
while (waiting[me] && key)
key = TestAndSet(&l->value);

waiting[me] = 0;
}

void release(struct lock *l,
int me)

{
int next = (me + 1) % N;

while ((next != me) &&
!waiting[next])

next = (next + 1) % N;

if (next == me)
l->value = 0;

else
waiting[next] = 0;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Compare-And-Swap

▪ Supported in x86, Sparc, etc.

• Update the memory location with the new value only when its old value equals to

the “expected” value

• e.g., cmpxchg in x86: compare and exchange

int CompareAndSwap(int *v, int expected, int new) {
int old = *v;
if (old == expected)
*v = new;

return old;
}

void acquire(struct lock *l) {
while (CompareAndSwap(&l->held, _____, _____));

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

LL & SC

▪ Supported in MIPS, Alpha, PowerPC, ARM, RISC-V, etc.

• Load-Locked(LL) fetches a value from memory

• Store-Conditional(SC) succeeds with returning 1 if no intervening store to the

address has taken place

• Otherwise, SC returns 0 without updating the memory

void acquire(struct lock *l) {
while (1) {
while (LL(&l->held));
if (SC(&l->held, 1)) return;

}
}

void release(struct lock *l) {
l->held = 0;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Fetch-And-Add

▪ Supported in x86, RISC-V, etc.

• Atomically increments a value while returning the old value

• e.g., xadd in x86: exchange and add

int FetchAndAdd(int *v, int a) {
int old = *v;
*v = old + a;
return old;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Ticket Locks Using Fetch-And-Add

▪ First get a ticket and wait until its turn

▪ Provides bounded waiting

struct lock {
int ticket = 0;
int turn = 0;

};

void acquire(struct lock *l) {
int myturn = FetchAndAdd(&l->ticket, 1);
while (l->turn != myturn);

}

void release(struct lock *l) {
l->turn = l->turn + 1;

}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

Controlling Interrupts (1)

▪ Disable interrupts for critical sections

• Disabling interrupts blocks external events that could trigger a context switch

• The code inside the critical section will not be interrupted

• There is no state associated with the lock

• intr_off() and intr_on() vs. push_off() and pop_off() in xv6

• Can two threads disable interrupts simultaneously?

void acquire(struct lock *l) {
cli(); // disable interrupts;

}
void release(struct lock *l) {

sti(); // enable interrupts;
}

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

Controlling Interrupts (2)

▪ Pros

• Simple

• Useful for a single-processor system

▪ Cons

• Only available to kernel

– Why not provide them as system calls?

• Insufficient on multi-processor systems

– Back to atomic instructions

• When the critical section is long, important interrupts can be delayed or lost

(e.g., timer, disks, etc.)

• Slower than executing atomic instructions on modern CPUs

4190.307: Operating Systems | Fall 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

Summary

▪ Spinlocks are horribly wasteful

• If a thread is spinning on a lock, the thread holding the lock cannot make progress

• The longer the critical section, the longer the spin

• CPU cycle is wasted

• Greater the chances for lock holder to be interrupted through involuntary context

switch

▪ Spinlocks (and disabling interrupts on a single CPU) are primitive

synchronization mechanisms

• They are used to build higher-level synchronization constructs

	슬라이드 1: Locks
	슬라이드 2: The Classic Example
	슬라이드 3: The Classic Example: Problem
	슬라이드 4: A Real Example
	슬라이드 5: Sharing Resources
	슬라이드 6: Synchronization Problem
	슬라이드 7: Concurrency in the Kernel
	슬라이드 8: Critical Section
	슬라이드 9: Locks
	슬라이드 10: Using Locks
	슬라이드 11: Requirements for Locks
	슬라이드 12: An Initial Attempt
	슬라이드 13: Implementing Locks
	슬라이드 14: Software-only Algorithm
	슬라이드 15: Peterson’s Algorithm
	슬라이드 16: Bakery Algorithm (1)
	슬라이드 17: Bakery Algorithm (2)
	슬라이드 18: Test-And-Set
	슬라이드 19: Using Test-And-Set
	슬라이드 20: Locks with Bounded Waiting
	슬라이드 21: Compare-And-Swap
	슬라이드 22: LL & SC
	슬라이드 23: Fetch-And-Add
	슬라이드 24: Ticket Locks Using Fetch-And-Add
	슬라이드 25: Controlling Interrupts (1)
	슬라이드 26: Controlling Interrupts (2)
	슬라이드 27: Summary

