Jin-Soo Kim (jinsoo.kim@snu.ac.kr) Systems Software & Architecture Lab. Seoul National University

Fall 2023

4190.307: Operating Systems

Course Information

- Schedule
 - 14:00 15:15 (Tuesday & Thursday)
 - Lecture room: Engineering Bldg. #301-203
 - 3 credits
 - Official language: Korean
- TA: Injae Kang, Heejae Kim (snucsl.ta [at] gmail.com)
- SNU eTL system for exam/project scores (and attendance)
- http://csl.snu.ac.kr/courses/4190.307/2023-2 for announcements and lecture slides
- <u>http://sys.snu.ac.kr</u> for project submissions and automatic grading

About Me

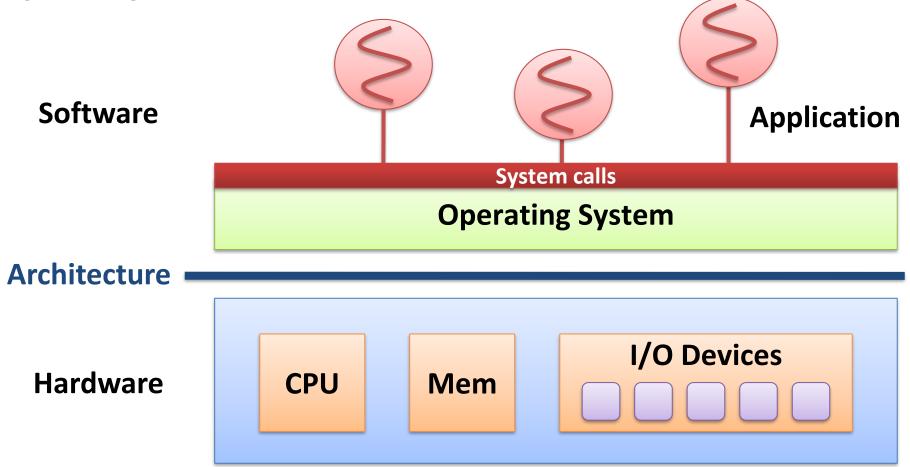
- Jin-Soo Kim (김진수)
 - Professor @ CSE Dept.
 - Systems Software & Architecture Laboratory

- Operating systems, storage systems, parallel and distributed computing, embedded systems, ...
- E-mail: jinsoo.kim@snu.ac.kr
- Tel: 02-880-7302
- Office: Engineering Bldg. #301-504
- Office hours: Tuesday & Thursday (appointments by email)
- <u>http://csl.snu.ac.kr</u>

Prerequisites

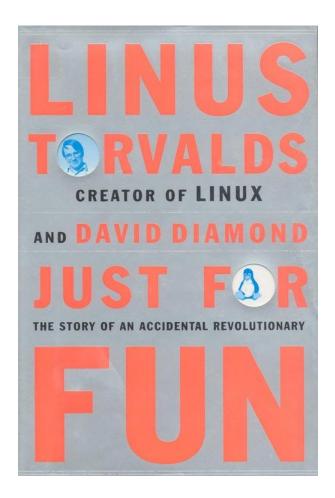
- Courses
 - Computer Architecture (4190.308) Must!
 - System Programming (MI 522.000800) Must!

학사과정 선수 교과목 연계도



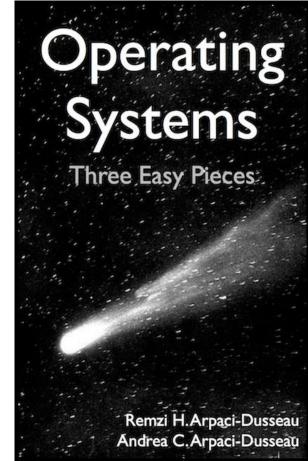
https://cse.snu.ac.kr/undergraduate/course-dependency-graph

- Skills
 - Fluent C programming
 - Familiarity with Linux commands and build environment (e.g., gcc, gdb, make, ...)
 - Reading a large, complex program
 - RISC-V architecture & assembly programming
- Accessible Linux (Ubuntu 20.04.4 LTS or similar) or MacOS machine


What is an OS?

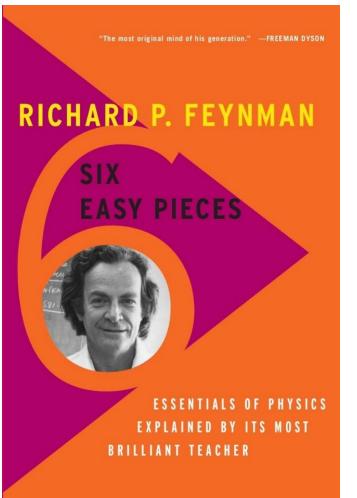
Computer systems internals

Why do we learn OS?

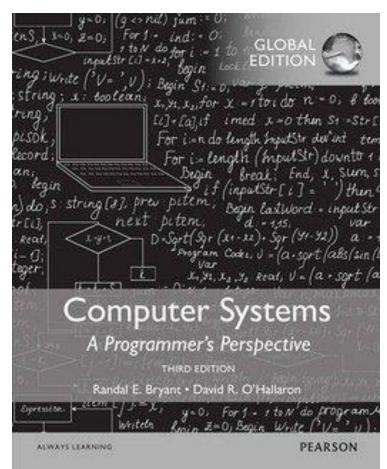

- To graduate (for some of you)
- To understand computer systems better
- To make a better OS or system
 - Functionality
 - Performance/cost
 - Reliability
 - Energy efficiency
- To make a new hardware up and running
- To design OS-aware hardware
- Just for fun!

Textbook

- Operating Systems: Three Easy Pieces
 - Remzi H.Arpaci-Dusseau and Andrea C.Arpaci-Dusseau
 - Arpaci-Dusseau Books
 - August 2018 (Version 1.00)
 - Available (with several options) at http://ostep.org
 - Korean version (based on Version 0.91) is also available at <u>https://github.com/remzi-arpacidusseau/ostep-translations/</u>, but I highly recommend you read the original English version
 - Read Remzi's great article at

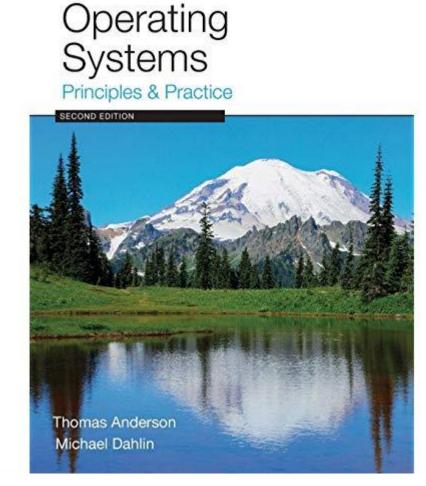

http://from-a-to-remzi.blogspot.com/2014/01/the-case-for-free-online-books-fobs.html

Why Three Pieces?


"... as Operating Systems are about half as hard as Physics."

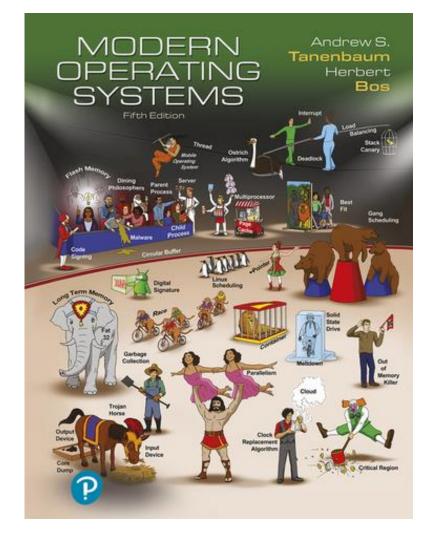
Chap. I A Dialogue on the Book

Reference: CSAPP

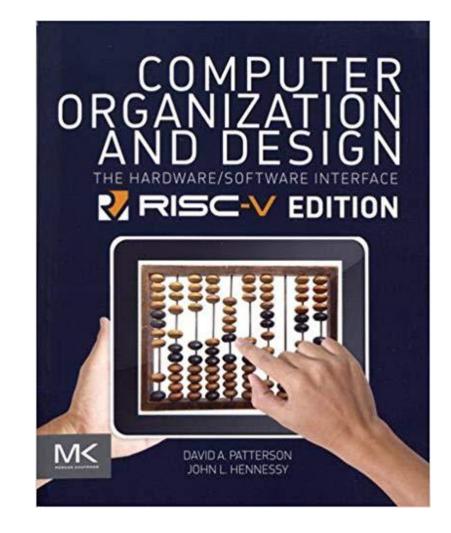

- Computer Systems: A Programmer's Perspective
 - Randel E. Bryant and David R. O'Hallaron
 - Third Edition
 - Pearson
 - March 2015
 - http://csapp.cs.cmu.edu

Reference: OSPP

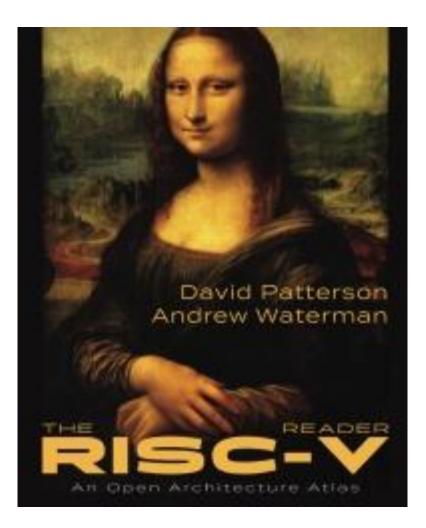
- Operating Systems: Principles and Practice
 - Thomas Anderson and Michael Dahlin
 - Second Edition
 - Recursive Books
 - August 2014


http://ospp.cs.washington.edu/

Reference: MOS


- Modern Operating Systems
 - Andrew S.Tanenbaum and Herbert Bos
 - Fifth Edition
 - Pearson
 - October 2022

• <u>https://www.pearson.com/en-us/subject-catalog/p/modern-operating-systems/P20000003295</u>


Reference: RISC-V (I)

- Computer Organization and Design: The Hardware/Software Interface (RISC-V Edition)
 - David A. Patterson and John L. Hennessy (Turing Award Recipients in 2017)
 - Second Edition
 - Morgan Kaufmann, 2017
 - <u>http://booksite.elsevier.com/9780128122754/</u>

Reference: RISC-V (2)

- The RISC-V Reader: An Open Architecture Atlas
 - David A. Patterson and Andrew Waterman
 - Strawberry Canyon, 2017
 - http://riscvbook.com/
 - The free Korean (pdf) version is available

Reference: RISC-V (3)

- <u>https://riscv.org/technical/specifications/</u>
 - Volume I: Unprivileged ISA (v20191213)
 - Volume II: Privileged Architecture (v20211203)

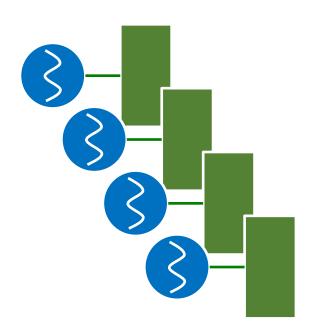
The RISC-V Instruction Set Manual Volume I: Unprivileged ISA Document Version 20191213

Editors: Andrew Waterman¹, Krste Asanović^{1,2} ¹SiFive Inc., ²CS Division, EECS Department, University of California, Berkeley andrew@sifive.com, krste@berkeley.edu December 13, 2019 The RISC-V Instruction Set Manual Volume II: Privileged Architecture Document Version 20211203

Editors: Andrew Waterman¹, Krste Asanović^{1,2}, John Hauser ¹SiFive Inc., ²CS Division, EECS Department, University of California, Berkeley andrew@sifive.com, krste@berkeley.edu, jh.riscv@jhauser.us December 4, 2021

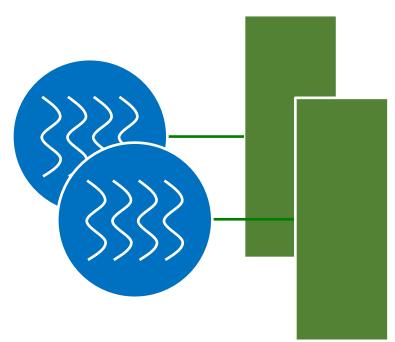
Course Plan

Lectures

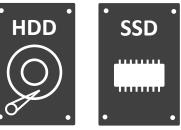

- General operating system concepts
- Case study: Linux, xv6

Hands-on projects

- Using xv6 instructional OS
- Based on RISC-V architecture


Lectures: Topics

- Virtualization
 - Process
 - CPU scheduling
 - Virtual memory



- Concurrency
 - Threads
 - Synchronization

- Persistence
 - Storage
- File systems

Projects: xv6

- A teaching OS developed by MIT
 - Port of the Sixth Edition Unix (v6) in ANSI C
 - Originally runs on multi-core x86 systems
 - We will use the version that runs on multi-core 64-bit RISC-V systems

• Why xv6?

- Code inherited from a real, historical OS!
- Includes working user-level programs and libraries
- Small: *only* 6K LOCs (vs. 27+ million LOCs for Linux)
- Easier to install on modern Linux / MacOS systems using QEMU
- Easier to extend
- Easier to understand modern OSes such as Linux

Projects Plan

- We are preparing 5 ~ 6 project assignments
 - The relative weight of each project can vary, typically increasing monotonically
 - Just for your reference: In 2020, there were 6 projects, and their weights were 1%, 2%, 6%, 9%, 12%, 20% for PA1 PA6, respectively
- These will be individual projects
- You can use up to 3 slip days
- Lab sessions
 - A separate class with a TA
 - Project announcement and Q & A
 - Hints & helps
 - Code review, oral tests, ...

Grading Policy (subject to change)

- Exams: 60% (Midterm 25%, Final 35%)
- Projects: 40%
- University policy requires students to attend at least 2/3 of the scheduled classes. Otherwise, you'll fail this course.
- We are using the electronic attendance system
- If you miss one of the exams, you'll fail this course
- The course drop request will NOT be accepted if you haven't taken the "System Programming" course or equivalent

Cheating Policy

- What is cheating?
 - Copying another student's solution (or one from the Internet) and submitting it as your own
 - Allowing another student to copy your solution (including publicly posting your solution on Github, etc.)
- What is NOT cheating?
 - Helping others use systems or tools
 - Helping others with high-level design issues
 - Helping others debug their code
- Penalty for cheating
 - Severe penalty on the grade (F) and report to dept. committee
 - Ask helps to your TA or instructor if you experience any difficulty!

Lecture Schedule

September

Su	Mo	Tu	We	Th	Fr	Sa				
					1	2				
3	4	5	6	7	8	9				
10	11	12	13	14	15	16				
17	18	19	20	21	22	23				
24	25	26	27	28	29	30				
November										
Su	Mo	Tu	We	Th	Fr	Sa				
			1	2	3	4				
5	6	7	8	9	10	11				
12	13	14	15	16	17	18				
19	20	21	22	23	24	25				
26	27	28	29	30						

October Su Mo Tu We Th Fr Sa (10) (12) midterm 30 31

December

Su	Mo	Tu	We	Th	Fr	Sa	
					1	2	
3	4	5	6	7	8	9	
10	11	12	13	14	15	16	final
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	

Summary

- Understanding OS is essential for a broad spectrum of computer systems research & development
 - Embedded systems
 - Cloud computing
 - Distributed systems
 - Security, ...
- It has been one of the toughest courses! Use your time wisely
- Please make sure if you're ready to take this course
- Happy hacking!