
Operating Systems

Seong-Yeop Jeong

2020.06.04.

Project #6

2

§ Kernel threads (45 points)
§ Preemptive priority scheduling (15 points)
§ Priority donation for sleeplock (30 points)

3

§ Switching from one user process to another.
§ 1. a user-kernel transition (system call or interrupt)

2. to the old process’s kernel thread,
3. a context switch to the current CPU’s scheduler thread,
4. a context switch to a new process’s kernel thread,
5. and a trap return to the user-level process

4

§ The function swtch performs the saves and restores for a kernel thread
switch.

§ swtch doesn’t directly know about threads; it just saves and restores re
gister sets, called contexts.
• Save current registers in old. Load from new (in /kernel/swtch.S)

§ When swtch returns, it returns to the instructions pointed to by the
restored ra register, that is, the instruction from which the new thread
previously called swtch. (context.ra)

§ In addition, it returns on the new thread’s stack. (context.sp)

5

§ You can reuse most of the existing data structures to implement kernel
threads.
• allocate stacks for kernel thread by using ‘already’ allocated kernel stack.
• use allocpid() for allocate tid(thread id) for kernel thread.

§ When a kernel thread is created, allocate an entry in the proc structure
§ initialize its address space to kernel_pagetable.
§ Because our kernel thread never runs user-space code, you can simplify

its implementation
• you don't have to allocate trapframe for kernel threads.
• Just allocate context for swtch.

6

7

§ int kthread_create(const char *name, int prio, void (*fn)(void *),
void *arg);
• The name can be assigned the same as the existing process creation.
• pior becomes the base priority of the new kernel thread.
• The fn is a function that begins when a thread occurs, and arg is a argument that is

passed on to it.
• If you understand the above context, you will know that thread executes a function.
• And if the new thread's priority is higher than the existing thread, it should yield.

8

§ You just need to make it work almost like an existing yield() function.

9

§ When a kernel thread is terminated, all the resources allocated for th
e kernel thread should be free.

§ And at the very end, run the sched() so that you can move to
the scheduler.

10

§ The kthread_set_prio() function sets the calling kernel thread’s
base priority value to newprio

§ In order to implement the priority donation, yield must be called accord
ing to effective priority not base priority.

§ Effective priority may be lower than base priority due to donation, At th
is time, if it is lower than newprio, you should change the effective priori
ty to newprio and cancel the priority change.

11

§ The kthread_get_prio() function returns the calling kernel thread’s
effective priority value

12

§ n = 1, testcases[n].fn = test_arg

13

§ preemptive priority scheduler basically chooses a task with the highest
priority among the runnable tasks.

§ When a thread is added to the runnable
that has a higher priority than the currently
running thread, the current thread should
immediately yield the processor to the new thread.

§ If there are multiple highest priority tasks with the same priority,
those tasks should be run in a round-robin fashion.

USER_PRIO_MAX

KERN_PRIO_MIN0

139

99

KERN_PRIO_DEF

lower

higher
50

USER_PRIO_DEF120

KERN_PRIO_MAX

14

§ Scheduling should be done according to effective priority.
§ The important part is that when it is the same priority, it should be impl

emented in the round robin fashion.
§ As for how to run round robin at the same priority, cycling from the be

ginning of the proc always selects the process ahead.
• You have to change this part a little.

15

§ Sleeplock is the same concept as mutex in xv6.
§ Priority inversion problem
• A situation where a higher-priority thread is unable to run because a lower-priority

thread is holding a resource it needs, such as a lock.

acquiresleep()

acquiresleep()

releasesleep()

Thread H (P=30)

Thread L (P=50)

Thread M (P=40)

priority inversion
create

create

16

§ The higher-priority thread (donor) can donate its priority to the lower-
priority thread (donee) holding the resource it requires.

§ The donee will get scheduled sooner since its priority is boosted due to
donation

§ When the donee finishes its job and releases the resource, its priority is
returned to the original priority

17

P=H

P=L P=H

P=M

P=H

P=H

P=L

acquiresleep()

acquiresleep()

releasesleep()

Thread H (P=30)

Thread L (P=50)

Thread M (P=40)

priority donated; Thread L’s priority becomes H

Thread L’s priority is returned to L

P=H

P=L P=L

P=M

P=L

P=H

P=L

acquiresleep()

acquiresleep()

releasesleep()

Thread H (P=30)

Thread L (P=50)

Thread M (P40)

priority inversion

After

Before

create

create

create

create

18

§ kthread_setprio() example

P=30

P=50 P=30

P=40

P=30

P=20

acquiresleep()

acquiresleep()

releasesleep()

Thread H (P30)

Thread L (P=50)

Thread M (P=40)

priority donated; Thread L’s priority becomes 50

Kthread_set_prio(20)

P=20P=
20

Cancel priority donation

19

P=30

P=50 P=40

P=40

P=30

P=30

acquiresleep(a) releasesleep(b)

Thread H (P30)

Thread L (P=50)

Thread M (P=40)

priority donated; Thread L’s priority becomes 40

acquiresleep(b)

create

acquiresleep(a)
create

acquiresleep(b)
releasesleep(b)

P=30

exit

P=40

releasesleep(a)

P=40 P=40

releasesleep(a)
exit

P=50

priority donated; Thread L’s priority becomes 30

20

P=30

P=50 P=40

P=40

P=30

P=30

acquiresleep(a) releasesleep(b)

Thread H (P30)

Thread L (P=50)

Thread M (P=40)

priority donated; Thread L’s priority becomes 40

acquiresleep(b)

create

acquiresleep(a)
create

acquiresleep(b)
releasesleep(b)

P=30

exit

P=40

releasesleep(a)

P=40 P=40

releasesleep(a)
exit

P=50

priority donated; Thread L’s priority becomes 30

21

22

23

§ You need to modify acquiresleep() and releasesleep().
§ If you do acquirelock, you have to change the effective priority accordin

g to the Prioirty Donation.
§ If you do releasesleep, change effective priority to the base priority and

switch the context using kthread_yield().

24

§ New or changed data structures for this project
§ How to make the newly created kernel thread start from the given function
§ How to deliver an argument to the new kernel thread
§ How to implement preemptive priority schduler
§ How to ensure the highest priority kernel thread wating for a sleeplock wakes up fir

st
§ Overall flow of acquiresleep() and releasesleep()
§ How to support multiple priority donation and nested priority donation

25

§ You can use up to 5 slip days for this semester
• You should explicitly declare the number of slip days to use in the Q&A board on

the submission server
• https://sys.snu.ac.kr/main.php?classIdx=1&menu=Board

§ 25% penalty per day after slip day

https://sys.snu.ac.kr/main.php%3FclassIdx=1&menu=Board

26

§ This is the last assignment.
§ If you have all the slip days, you can submit them by June 21+5.
§ If your implementation operate in multi-processor environment,

you will get bonus points.

§ Any questions?

