
4190.307:

Operating Systems

Lab. 4

TA. YeouGyu Jeong

(81887821@snu.ac.kr)

System Software &
Architecture Lab.

Seoul National University

Spring 2020

2

▪ In this project, you have to

• Share code segment across fork

• Implement copy-on-write on data, stack, and heap segment

• Write design report

▪ Due date is May 24(Sunday)

3

Virtual memory
of parent process

Physical memory

read only page

read/write page

4

Virtual memory
of parent process

Physical memory

read only page

read/write page

Virtual memory
of child process

5

Virtual memory
of parent process

Physical memory

read only page

read/write page

Virtual memory
of child process

write
request

6

Virtual memory
of parent process

Physical memory

read only page

read/write page

Virtual memory
of child process

write
request

7

▪ On fork, simply map code page of child process to the same physical

page as parent process

▪ Should “every” process of the same program share the same code page?

• e.g.) Should 2 ls here share the same code page?

• You don’t have to

This requires implementation of memory-mapped file which is not done in xv6

• Only make parent and child share the same code page

sh application A ls

ls

run in background execute

run in foreground

8

▪ On fork,

• make the page read-only

• map the physical page to both parent and child

▪ When the process writes to the page,

• write fails and exception is raised because the page is read-only

• The exception handler should copy the page and remap virtual address to copied

page

9

▪ Suppose that xv6 runs code on left

▪ Parent forks, waits, and exits

▪ Child modifies global variable, forks, waits,

and exec

• Grand child modifies global variable and exits

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

10

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

Virtual memory
of parent process

read only page

read/write page

Physical memory

11

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

Virtual memory
of parent process

read only page

read/write page

Physical memory

Virtual memory
of child process

Set pages
read-only

12

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

Virtual memory
of parent process

read only page

read/write page

Physical memory

Virtual memory
of child process

Copy on write

Page is now
writable

13

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

Virtual memory
of parent process

read only page

read/write page

Physical memory

Virtual memory
of child process

Virtual memory
of grand child process

Set page
read-only

14

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

Virtual memory
of parent process

read only page

read/write page

Physical memory

Virtual memory
of child process

Virtual memory
of grand child process

Set page
writable

Copy on write

15

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

Virtual memory
of parent process

read only page

read/write page

Physical memory

Virtual memory
of child process

Release
page frame

16

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

Virtual memory
of parent process

read only page

read/write page

Physical memory

Virtual memory
of child process

17

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

Virtual memory
of parent process

read only page

read/write page

Physical memory

Virtual memory
of child process

Release
page frame

Set page
writable

18

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

Virtual memory
of parent process

read only page

read/write page

Physical memory

Release
page frames

19

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/ls”);

}
} else { // parent
wait(); exit(0);

}
}

read only page

read/write page

Physical memory

Release
page frames

20

user text
& data

user
stack

heap

trapframe

trampoline

0 MAXVA

0 MAXVA

text
user
stack

heapdata

21

▪ Address space of a process is initialized by exec function

▪ To separate .text and .data to different pages, you need to give

--no-omagic link option

▪ And make xv6 to load sections to virtual memory properly

▪ The above is already done in skeleton code

▪ What you have to do here is setting .text section read-only

• You have to use flags in struct progheader and permission flags in elf.h

22

▪ In exec, xv6 loads all loadable segments from ELF binary

$ readelf -l _sh

Elf file type is EXEC (Executable file)
Entry point 0xa60
There are 2 program headers, starting at offset 64

Program Headers:
Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align
LOAD 0x0000000000001000 0x0000000000000000 0x0000000000000000

0x00000000000013f1 0x00000000000013f1 R E 0x1000
LOAD 0x00000000000023f8 0x00000000000023f8 0x00000000000023f8

0x000000000000000e 0x0000000000000090 RW 0x1000
Section to Segment mapping:
Segment Sections...
00 .text .rodata
01 .sdata .sbss .bss

23

▪ 64-bit RISC-V CPU supports 39 or 48-bit virtual address system

▪ xv6 uses 39-bit address system called Sv39

▪ In Sv39,

• Page size is 4KiB

• 3-level page-table is used, but any level can be leaf entry(super page)

– If level 2 entry is a leaf, it points 1GiB sized super page

– If level 1 entry is a leaf, it points 2MiB sized super page

– If level 0 entry is a leaf, it points 4KiB sized page

• Page-table is aligned to page boundary

– A page-table entry is 8 bytes

– A page-table page has 512 entries

24

satp register

PTE
PTE…

PTE

Level 2 page-table page

PTE
PTE…

PTE

Level 1 page-table page

PTE
PTE…

PTE

Level 0 page-table page

Reserved PPN[2] PPN[1] PPN[0] RSW D A G U X W R V

10 26 9 9 2 1 1 1 1 1 1 1 1

A page-table entry

25

▪ D: Dirty bit, set on page write

▪ A: Accessed bit, set on page read/write/instruction fetch

▪ G: Global mapping, set for pages that exist in all address spaces

▪ U: If set, the page can be accessed from user mode

▪ X: If set, the page can be executed

▪ W: If set, the page can be written

▪ R: If set, the page can be read

▪ V: Validity bit, the entry is valid only if V bit is set

▪ If X, W, and R are all 0, the entry is a pointer to next level

26

▪ int mappages(pagetable_t pagetable, uint64 va, uint64 size,
uint64 pa, int perm)

• Used to map physical pages to virtual address space

▪ uint64 walkaddr(pagetable_t pagetable, uint64 va)

• Used to get physical address of virtual address

27

▪ xv6 uses a simple free list to manage physical pages

▪ To allocate a physical page, use kalloc

▪ To free the physical page, use kfree

next

free page

next

free page

…

global variable
kmem

freelist

lock

28

▪ Copy-on-write should be performed only for the page in which the

page fault occurs, not the whole memory segment

▪ You must terminate the program if it accesses invalid memory region, or

writes to the code segment

▪ Make sure there is no memory leak

29

▪ We added free memory counter to the skeleton code

• You can see how many pages are available by pressing Ctrl-P

• Or by getfreemem system call

▪ v2p system call and v2ptest user space application

• v2p system call gets virtual address and returns physical address

• You can check if code segment is really shared, data page is copied on write, …

30

▪ Brief summary of modifications you have made

▪ How do you catch the page fault?

▪ How do you implement code segment sharing?

▪ How do you implement copy-on-write on data/stack/heap segment?

▪ When is a page frame released and how?

▪ Other things you have considered in your implementation

31

▪ Please read the project description carefully

• https://github.com/snu-csl/os-pa5

▪ You have to start the project from pa5 branch

▪ Please only modify Makefile, and files in kernel directory

• Changes to other source will be ignored by grading script

▪ Please remove all the debugging outputs before you submit

▪ Keep getfreemem and v2p system call work for grading

https://github.com/snu-csl/os-pa5

32

▪ defs.h
• For function definitions

▪ kalloc.c
• For physical page allocation

▪ vm.c
• For virtual address and page-table management

▪ riscv.h
• For PTE flags and page-table related macros

▪ trap.c
• For exception handling

▪ exec.c, elf.h
• For elf binary loading

33

▪ Any questions?

▪ Or feel free to ask us in KakaoTalk

