TA.YeouGyu Jeong
(81887821 @snu.ac.kr)

System Software &
Architecture Lab.

Seoul National University

Spring 2020

4190.307:
Operating Systems
Lab. 4

Project #5 — Memory sharing

" |n this project, you have to
* Share code segment across fork
* Implement copy-on-write on data, stack, and heap segment
* Write design report

* Due date is May 24(Sunday)

Memory sharing and copy-on-write

Virtual memory
of parent process

Physical memory

\ 4

B read only page
"1 read/write page

Memory sharing and copy-on-write

Virtual memory
of child process

— -

Virtual memory
of parent process

Physical memory

A 4
A

I read only page
1

read/write page

Memory sharing and copy-on-write

Virtual memory
of parent process

Physical memory

I read only page
1

read/write page

Virtual memory
of child process

7

A 4
A

write

request

Memory sharing and copy-on-write

Virtual memory
of parent process

Physical memory

I read only page
1

read/write page

Virtual memory
of child process

— 7

write

request

How to make code sharing work?

" On fork, simply map code page of child process to the same physical
page as parent process

" Should “every” process of the same program share the same code page!
* e.g.) Should 2 s here share the same code page!

run in background - - execute
sh » application A o 1s

run in foreground ,
> S

* You don’t have to
This requires implementation of memory-mapped file which is not done in xvé6

* Only make parent and child share the same code page

How to make copy-on-write work?

= On fork,

* make the page read-only

* map the physical page to both parent and child
* When the process writes to the page,

* write fails and exception is raised because the page is read-only
* The exception handler should copy the page and remap virtual address to copied

page

int global = 10;

int main(void) {
if (fork() == 0) {

global = 5;

if (fork() == 0) {
// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/1s”);

}

} else { // parent
wait(); exit(0);
}

}

" Suppose that xvé6 runs code on left
* Parent forks, waits, and exits

* Child modifies global variable, forks, waits,
and exec

* Grand child modifies global variable and exits

9

Memory sharing example

Virtual memory
of parent process

Physical memory

int global = 10;

Yy V VY

int main(void) {
®»if (fork() == 0) {

global = 5;

if (fork() == 0) {
// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/1s”);

}

} else { // parent
wait(); exit(0);

read only page

I | read/write page 10

Memory sharing example

Virtual memory

Physical memor
of parent process Y y

int global = 10;

1 1
int main(void) { < Set pages
if (fork() == 0) { read-only
B global = 5;
if (fork() == 0) { Virtual memory
// grand child of process
global = 3;
exit(0); —

} else { // child
wait();
exec(“/bin/1s”);

}

} else { // parent

® wait(); exit(0);

read only page

I | read/write page 11

Memory sharing example

Virtual memory
of parent process

int global = 10;

Physical memory

1
int main(void) {
if (fork() == 0) {
global = 5;
B if (fork() == 0) { Virtual memory
// grand child of process

global = 3;
exit(0); ——1
} else { // child
wait();
exec(“/bin/1s”);
}
} else { // parent

® wait(); exit(0);

read only page

| read/write page

n
»

\

Page is now
writable

Copy on write

Memory sharing example

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {
// grand child
®» global = 3;
exit(0);
} else { // child
» wait();
exec(“/bin/1s”);
}
} else { // parent

® wait(); exit(0);

read only page

| read/write page

Virtual memory
of parent process

Physical memory

Virtual memory
of process

Virtual memory
of process

n
»

)

Set page
read-only

13

Memory sharing example

int global = 10;

int main(void) {
if (fork() == 0) {
global = 5;
if (fork() == 0) {
// grand child
global = 3;
- exit(0);
} else { // child
» wait();
exec(“/bin/1s”);
}
} else { // parent

® wait(); exit(0);

read only page

| read/write page

Virtual memory
of parent process

Physical memory

Virtual memory
of process

Virtual memory
of process

n
»

\

Set page
writable

Copy on write

14

Memory sharing example

Virtual memory

Physical memor
of parent process Y y

int global = 10;

1 1
int main(void) { >
0 50! N e
if (fork()’== 0) { Virtual memory page frame
// grand child of process

global = 3;
exit(0); ——1
} else { // child
» wait();
exec(“/bin/1s”);
}
} else { // parent

® wait(); exit(0);

read only page

I | read/write page 15

Memory sharing example

Virtual memory

Physical memor
of parent process Y y

int global = 10;

1 1
int main(void) { >
if (fork() == 0) {
global = 5;
if (fork() == 0) { Virtual memory
// grand child of process
global = 3;
exit(0); —3

} else { // child
wait();
B exec(“/bin/1s”);
}
} else { // parent

® wait(); exit(0);

read only page

I | read/write page 16

Memory sharing example

Virtual memory

Physical memor
of parent process Y y

int global = 10;

— q—
> < Set page
int main(void) { > writable
if (fork() == 0) { ———
global = 5; ——1 Release
if (fork() == 0) { Virtual memory page frame
// grand child of process

global = 3;
exit(0); ——1
} else { // child
wait();
exec(“/bin/1s”);
}
} else { // parent

® wait(); exit(0);

read only page

I | read/write page 17

Memory sharing example

Virtual memory
of parent process

Physical memory

int global = 10;

Yy V VY

int main(void) {
if (fork() == 0) {

global = 5; Release
if (fork() == 0) { page frames

// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/1s”);

}

} else { // parent

® wait(); exit(0);

read only page

| read/write page 18

Physical memory

int global = 10;

. . . Release
int main(void) { ‘<1
if (fork() == 0) {

page frames

global = 5;

if (fork() == 0) {
// grand child
global = 3;
exit(0);

} else { // child
wait();
exec(“/bin/1s”);

}

} else { // parent
wait(); exit(0);

read only page

I | read/write page 19

Recap —Virtual address space layout

0 MAXVA
user text user hea
& data stack P
LL trampoline
‘ trapframe
0 MAXVA
user

text | data stack heap

Initializing process address space

Address space of a process is initialized by exec function

To separate .text and .data to different pages, you need to give
--no-omagic link option

And make xvé to load sections to virtual memory properly

The above is already done in skeleton code

What you have to do here is setting .text section read-only
* You have to use flags in struct progheader and permission flags in elf.h

21

" |n exec, xv6 loads all loadable segments from ELF binary

$ readelf -1 _sh

Elf file type is EXEC (Executable file)
Entry point 0xa60
There are 2 program headers, starting at offset 64

Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD OXx0000000000001000 X000V Ox00V0V0V0V0V0
0x00000000000013f1 0x00000000000013f1 R E 0x1000
LOAD OXx000000000000231f8 0x000000000000231f8 Ox0000000000002318
0Xx000000000000000e 0Xx0000000000000090 RW 0x1000
Section to Segment mapping:
Segment Sections...
00 .text .rodata
01 .sdata .sbss .bss

Virtual address system of RISC-V

= 64-bit RISC-V CPU supports 39 or 48-bit virtual address system
= xvb6 uses 39-bit address system called Sv39

" |n Sv39,
* Page size is 4KiB
* 3-level page-table is used, but any level can be leaf entry(super page)
— If level 2 entry is a leaf, it points | GiB sized super page

— If level | entry is a leaf, it points 2MiB sized super page
— If level O entry is a leaf, it points 4KiB sized page

* Page-table is aligned to page boundary
— A page-table entry is 8 bytes
— A page-table page has 512 entries

23

Paging in Sv39

PTE —> PTE — PTE
e — K
PTE PTE PTE

Level 2 page-table page Level 1 page-table page Level 0 page-table page

“Reserved | PPN[Zl | PPN[L] | PPNTO] |RSW | DA |G U X W IRV
10 26 9 9 2 1111 1 1 11
A page-table entry

24

Page-table entry bits

= D: Dirty bit, set on page write

= A
= G
= U: If set, the
= X: If set, the
= W: If set, the
= R: [f set, the
=\

: Accessed bit, set on page read/write/instruction fetch
: Global mapping, set for pages that exist in all address spaces

page can be accessed from user mode
page can be executed
page can be written

page can be read

: Validity bit, the entry is valid only if V bit is set

= |f X,W,and R are all O, the entry is a pointer to next level

Handling page-table in xvé

= 1nt mappages(pagetable t pagetable, uint64 va, uint64 size,
uint64 pa, int perm)
* Used to map physical pages to virtual address space
= uint64 walkaddr(pagetable_ t pagetable, uint64 va)

* Used to get physical address of virtual address

Managing physical memory in xvé

= xvb uses a simple free list to manage physical pages
» To allocate a physical page, use kalloc
» To free the physical page, use kfree

next |:> next |:>
lock
s [RN

global variable

Kmem free page free page

Please note that...

= Copy-on-write should be performed only for the page in which the
page fault occurs, not the whole memory segment

" You must terminate the program if it accesses invalid memory region, or
writes to the code segment

= Make sure there is no memory leak

To verify your kernel

" We added free memory counter to the skeleton code
* You can see how many pages are available by pressing Ctrl-P
* Or by getfreemem system call

= v2p system call and v2ptest user space application

* v2p system call gets virtual address and returns physical address

* You can check if code segment is really shared, data page is copied on write, ...

29

Desigh document

* Brief summary of modifications you have made
* How do you catch the page fault?

* How do you implement code segment sharing?

* How do you implement copy-on-write on data/stack/heap segment?
* When is a page frame released and how!

= Other things you have considered in your implementation

When you do your project,

* Please read the project description carefully
* https://github.com/snu-csl/os-pa5

" You have to start the project from pa5 branch

" Please only modify Makefile, and files in kernel directory

* Changes to other source will be ignored by grading script
* Please remove all the debugging outputs before you submit
» Keep getfreemem and v2p system call work for grading

https://github.com/snu-csl/os-pa5

You may want to see...
" defs.h

* For function definitions
" kalloc.c
* For physical page allocation
" vim.cC
* For virtual address and page-table management
" riscv.h
* For PTE flags and page-table related macros
" trap.c
* For exception handling

" exec.c, elf.h
* For elf binary loading

32

Thank you!

= Any questions!

» Or feel free to ask us in KakaoTalk

33

