
Operating Systems - Scheduling

Seong-Yeop Jeong

2020.04.21.

Project #4

2

▪ You can use up to 5 slip days for this semester

• You should explicitly declare the number of slip days to use in the Q&A board on

the submission server

• https://sys.snu.ac.kr/main.php?classIdx=1&menu=Board

▪ 25% penalty per day after slip day

https://sys.snu.ac.kr/main.php?classIdx=1&menu=Board

3

▪ Process states (in proc.h)

• Enum prostate { UNUSED, SLEEPING, RUNNABLE, RUNNING, ZOMBIE }

▪ UNUSED : Not used

▪ SLEEPING : Wait for I/O, wait(), or sleep()

▪ RUNNABLE : Ready to run

▪ RUNNING : Running on CPU

▪ ZOMBIE : Exited, wait for parent call wait()

4

▪ Switching from one user process to another

• In this example, xv6 runs with one CPU (One scheduler thread)

5

▪ Entering scheduler when

1. Exiting process

2. Sleeping process

3. Yielding CPU (timer interrupt)

6

▪ A simple scheduling policy, which runs each process in turn.

• This policy is called round robin

▪ Each CPU calls scheduler() after setting itself up.

▪ Scheduler never returns. It loops, doing

• choose a process to run.

• swtch to start running that process.

• eventually that process transfers control

• via swtch back to the scheduler

▪ in kernel/proc.c

• void scheduler(void)

7

▪ The scheduler loops over the process table looking for a

p-> state == RUNNABLE

▪ Once it finds a process, it sets the per-CPU current process(c->proc)

▪ Marks the process as RUNNING, and then calls swtch to start running

8

▪ RISC-V has three modes in which the CPU can execute instructions

machine mode, supervisor mode, and user mode

▪ Time interrupt in xv6 is machine mode.

▪ The yield calls in usertrap and kerneltrap cause this switching

9

▪ In this project, you have to

• 1. Implement the nice() system call

• 2. Implement a Simplified Linux 2.4 Scheduler

• 3. Revise the getticks() system call

▪ Due date is May 3 (Sunday) 11:59PM

10

▪ int nice(int pid, int inc)

• Add inc to the current nice value of the process pid.

• The range of nice value is -20 to 19

• A higher nice value means a lower priority

• When a process is created, its nice value is the same as the parent’s

• The nice value of the init process is zero

• if pid is positive, then the nice value of process with the specified pid is changed.

• If pid is zero, then the nice value of the calling process if is changed.

11

▪ return value

• On success, zero is returned.

• On error, -1 is returned.

– pid is negative.

– There is no valid process that has pid.

– The resulting nice value exceeds the range [-20, 19]

12

▪ On every timer ticks, the 𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 value is decremented by 1

• When 𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is 0, the process used up all its time slice

• and the scheduler is invoked !

▪ When the scheduler is invoked, the scheduler picks the process

that has maximum goodness value.

goodness(p) = 0 ,if 𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 0
= 𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + (20 - 𝑝→𝑛𝑖𝑐𝑒) ,otherwise

13

▪ If there are no runnable processes, the scheduler busy-waits in current

epoch

▪ When the 𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 value of all the runnable process will become 0,

• The scheduler start new epoch, and reset the time slice for all processes

For runnable processes
𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ((20 – (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

For blocked processes (when 𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is not 0)
𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = (𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1) +((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

14

▪ When fork is executed, the process’ remaining time slice is split

• parent : 𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1

• child : (𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1) >> 1

▪ Once scheduled, the running process is not preempted until the end

of its time slice

15

▪ int getticks(int pid)

• The getticks system call returns the number of ticks used by the process pid

• The skeleton code already includes an implementation of the getticks() system call

for the default round-robin scheduler.

• Pre-implemented getticks system call doesn’t return the correct number of ticks

• So, you revise it

16

▪ int getticks(int pid)

• If pid is positive, return the number of ticks used by the process.

• If pid is zero, return the number of ticks used by the calling process.

▪ return value

• On success, the number of ticks is returned.

• On error, -1 is returned.

17

▪ In this project, you have to submit a report explaining your

implementation. (+ source code)

▪ These must be included in your report.

• How to implement scheduling algorithm

– You must explain details about your schedule

• How to make sure the getticks() system call returns the correct number of ticks

• Schedtest2 result (make qemu-log result, xv6.log) and an explanation

• Schedtest2 image (make png result)

18

▪ The CPUS is already set to 1 in the Makefile

▪ Your implementation should pass the following test programs available on xv6

• usertests

• schedtest1

• Schedtest2

▪ Do not add any system calls other than nice() and getticks()

▪ You only need to modify those files in the ./kernel directory

19

▪ modification

• proc.c

• trap.c

▪ In xv6 book

• Chapter 4.1 ~ 4.4 (about trap)

• Chapter 6 (about scheduling)

20

▪ The init process’ nice is zero, which is the default value for 𝑝→𝑛𝑖𝑐𝑒, and

the counter is six according to the formula above.

▪ When you first boot up, 𝑝→𝑛𝑖𝑐𝑒 should be set to zero, and the counter

should be parent, child all 3 because it was inherited from init.

▪ And because there is no runnable process, do not enter the new epoch

and do not reassign the counter.

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ((20 – (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

21

6 3

3

init
(nice 0)

sh
(nice 0)

boot

Sleeping

Sleeping

fork()
parent : 𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1
child : (𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1) >> 1

Busy waiting

22

6 3 3 3 3 ?

3 1 1 1 ?

2 1 0 ?

init
(nice 0)

sh
(nice 0)

boot

Sleeping

Sleeping

parent : 𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1
child : (𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1) >> 1

Process 1
(nice 0)Runnable

fork()

New epoch
RUNNING

23

6 3 3 3 3 7 7 …

3 1 1 1 6 6 …

2 1 0 6 5 …

init
(nice 0)

sh
(nice 0)

boot

Sleeping

Sleeping

parent : 𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1
child : (𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1) >> 1

Process 1
(nice 0)Runnable

fork()

New epoch

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = (𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1) +((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

For blocked process

For runnable process

RUNNING

24

6 3 3 3 3 7 7 … 7 9 9 …

3 1 1 1 6 6 … 6 9 9 …

2 1 0 6 5 … 0 6 5 …

init
(nice 0)

sh
(nice 0)

boot

Sleeping

Sleeping

parent : 𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1
child : (𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1) >> 1

Process 1
(nice 0)Runnable

fork()

New epoch

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = (𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1) +((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

For blocked process

For runnable process

RUNNING
New epoch

25

6 3 3 3 3 7 7 … 7 9 9 … 9 10 10 …

3 1 1 1 6 6 … 6 9 9 … 9 10 10 …

2 1 0 6 5 … 0 6 5 … 0 6 5 …

init
(nice 0)

sh
(nice 0)

boot

Sleeping

Sleeping

parent : 𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1
child : (𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1) >> 1

Process 1
(nice 0)Runnable

fork()

New epoch

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = (𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1) +((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

For blocked process

For runnable process

RUNNING
New epoch New epoch

26

6 3 3 3 3 7 7 … 7 9 9 … 9 10 10 … 10 11 11

3 1 1 1 6 6 … 6 9 9 … 9 10 10 … 10 11 11

2 1 0 6 5 … 0 6 5 … 0 6 5 … 0 6 5

init
(nice 0)

sh
(nice 0)

boot

Sleeping

Sleeping

parent : 𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1
child : (𝑝 → 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1) >> 1

Process 1
(nice 0)Runnable

fork()

New epoch

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = (𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1) +((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

For blocked process

For runnable process

RUNNING
New epoch New epoch New epoch

27

28

▪ If you have a process with a nice value of -20, 0,19 ,what order is it sche

duled? (P1:0, P2:0, P3:0 -> P1: -20, P2:0, P3:19)

xv6 kernel is booting

init: starting sh
$ schedtest2
0, 7, 7, 6
5, 18, 18, 18
10, 18, 18, 18
15, 18, 18, 18
20, 18, 18, 18
25, 18, 18, 18
30, 28, 18, 7
35, 33, 18, 3
40, 33, 18, 3
45, 33, 18, 3
50, 33, 18, 3
55, 33, 18, 3
60, 33, 18, 3

29

6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6 6 6 6 6 6 5 4 3 2 1 0 0 0 0 0 0 0

6 6 6 6 6 6 6 6 6 6 6 6 6 5 4 3 2 1 0

Process 1
(nice 0)

Process 2
(nice 0)

Process 3
(nice 0)

end epoch new epoch

Runnable RUNNING

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1For runnable process

30

11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

6 6 6 6 6 6 6 6 6 6 6 6 5 4 3 2 1 0 0

Process 1
(nice -20)

Process 2
(nice 0)

Process 3
(nice 19)

end epoch new epoch

Runnable RUNNING

𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1For runnable process

31

xv6 kernel is booting

init: starting sh
$ schedtest …
0, 7, 7, 6
5, 18, 18, 18
10, 18, 18, 18
15, 18, 18, 18
20, 18, 18, 18
25, 18, 18, 18
30, 28, 18, 7
35, 33, 18, 3
40, 33, 18, 3
45, 33, 18, 3
50, 33, 18, 3
55, 33, 18, 3
60, 33, 18, 3

Init : 6

Init : 3 sh : 3

sh : 1 schedtest : 2

schedtest : 1 P1 : 1

schedtest : 0 P2 : 1

schedtest : 0 P3 : 0

runnable runnable

runnable

runnable

counter

logger : 0schedtest : 0

runnable

parent child

Time Slice is not finished

and continues to run

32

xv6 kernel is booting

init: starting sh
$ schedtest …
0, 7(1+6), 7(1+6), 6(0+6)
5, 18, 18, 18
10, 18, 18, 18
15, 18, 18, 18
20, 18, 18, 18
25, 18, 18, 18
30, 28, 18, 7
35, 33, 18, 3
40, 33, 18, 3
45, 33, 18, 3
50, 33, 18, 3
55, 33, 18, 3
60, 33, 18, 3

Init : 6

sh : 3

schedtest : 2

schedtest : 1 P1 : 6

schedtest : 0 P2 : 6

schedtest : 0 P3 : 6

runnable runnable

runnable

runnable

counter

logger : 6schedtest : 6

runnable

New epoch !!
parent child

blocked processes

Init : 7

sh : 6

33

xv6 kernel is booting

init: starting sh
$ schedtest2
0, 7, 7, 6
5, 18, 18, 18 -> phase1
10, 18, 18, 18
15, 18, 18, 18
20, 18, 18, 18
25, 18, 18, 18
30, 28, 18, 7
35, 33, 18, 3 -> phase2
40, 33, 18, 3
45, 33, 18, 3
50, 33, 18, 3
55, 33, 18, 3
60, 27, 18, 5
65, 27, 18, 6 -> phase3
70, 27, 18, 6

75, 27, 18, 6
80, 27, 18, 6
85, 27, 18, 6
90, 24, 18, 8
95, 24, 18, 9 -> phase4
100, 24, 18, 9
105, 24, 18, 9
110, 24, 18, 9
115, 24, 18, 9
120, 21, 18, 11
125, 21, 18, 12 -> phase5
130, 21, 18, 12
135, 21, 18, 12
140, 21, 18, 12
145, 21, 18, 12
150, 21, 18, 12

phase1 0/0/0
phase2 -20/0/19
phase3 -15/0/15
phase4 -10/0/10
phase5 -5/0/5

34

▪ Even if you change the nice value to nice(), you do not need to change

the p->counter immediately.

• Just write the changed value when the p->nice value is used.

▪ What happens when there's a block in the middle ?
• 𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = (𝑝→𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >> 1) +((20 - (𝑝→𝑛𝑖𝑐𝑒)) >> 2) + 1

▪ When timer interrupt is occurred, the p->counter value may become

negative once the p->counter value is reduced.

▪ If runnable process is not available, continue waiting without starting

new epoch

35

▪ Any questions?

