Operating Systems - Scheduling

Project #4

Seong-Yeop Jeong

2020.04.21.

Reminder) Late Submission policy

" You can use up to 5 slip days for this semester

* You should explicitly declare the number of slip days to use in the Q&A board on
the submission server

* https://sys.snu.ac.kr/main.php?classldx=1&menu=Board

= 25% penalty per day after slip day

https://sys.snu.ac.kr/main.php?classIdx=1&menu=Board

" Process states (in proc.h)
* Enum prostate { UNUSED, SLEEPING, RUNNABLE, RUNNING, ZOMBIE }

= UNUSED : Not used

= SLEEPING : Wait for I/O, wait(), or sleep()
= RUNNABLE : Ready to run

* RUNNING : Running on CPU

= ZOMBIE : Exited, wait for parent call wait()

Xv6 Scheduler

* Switching from one user process to another

* In this example, xv6 runs with one CPU (One scheduler thread)

user
space

save
swtch swtch rgstore
kernel > >
Space kstack kstack kstack
shell scheduler cat

Kernel

* Entering scheduler when sched(void)

|. Exiting process ! intena;

. proc *p = myproc();
2. Sleeping process
('holding(&p->lock))

3. Yielding CPU (timer interrupt) panic()3

(mycpu()->noff != 1)
panic(J;
(p->state == RUNNING)
panic(J;
(intr_get())

[csl@csl: xvb-riscv-snul]$ grep -nr "sched()" panic(

sched();

intena = mycpu()->intena;
swtch(&p->context, &mycpu()->scheduler);
mycpu()->intena = intena;

sched();
sched(z;

Xv6 Scheduler

= A simple scheduling policy, which runs each process in turn.
* This policy is called round robin

* Each CPU calls scheduler() after setting itself up.

* Scheduler never returns. It loops, doing
* choose a process to run.
* swtch to start running that process.
* eventually that process transfers control
* via swtch back to the scheduler

" in kernel/proc.c

* void scheduler(void)

" The scheduler loops over the process table looking for a

* Once it finds a process, it sets the per-CPU current process()

= Marks the process as ,and then calls to start running

for(p = proc; p < &proc[NPROC]; p++) {
acquire(&p-=lock);
if(p-=state == RUNNABLE) {

p->state = RUNNING;
C-=proc = p;
swtch (&c->scheduler, &p->context);

c-»proc = ' ;
}

release(&p->lock);

= RISC-V has three modes in which the CPU can execute instructions
machine mode, supervisor mode, and user mode

* Time interrupt in xvé is machine mode.

" The yield calls in usertrap and kerneltrap cause this switching

Project#4 — Linux 2.4 Scheduler

" |n this project, you have to
* |.Implement the nice() system call
* 2.Implement a Simplified Linux 2.4 Scheduler
* 3.Revise the getticks() system call

* Due date is May 3 (Sunday) | |:59PM

nice system call - |

" int nice(int pid, int inc)

Add inc to the current nice value of the process pid.

The range of nice value is -20 to 19

A higher nice value means a lower priority

When a process is created, its nice value is the same as the parent’s

The nice value of the init process is zero

if pid is positive, then the nice value of process with the specified pid is changed.

If pid is zero, then the nice value of the calling process if is changed.

10

nice system call - 2

" return value
® On SUCCeESS, Zero iS returned.

* On error, -1 is returned.
— pid is negative.
— There is no valid process that has pid.
— The resulting nice value exceeds the range [-20, 19]

11

Simplified Linux 2.4 scheduler - |

= On every timer ticks, the p—counter value is decremented by |
* When p—counter is 0, the process used up all its time slice

* and the scheduler is invoked !
" When the scheduler is invoked, the scheduler picks the process

that has maximum goodness value.

,1f p-counter ==

goodness(p) = ©
,otherwise

p—-counter + (20 - p-nice)

* |[f there are no runnable processes, the scheduler busy-waits in current
epoch

* When the p—counter value of all the runnable process will become 0,

* The scheduler start new epoch, and reset the time slice for

For runnable processes
p-counter = ((20 - (p-nice)) >> 2) + 1

For blocked processes (when p—counter is not 0)
p-counter = (p-counter >> 1) +((20 - (p-nice)) >> 2) + 1

13

Simplified Linux 2.4 scheduler - 3

* When fork is executed, the process’ remaining time slice is split

* parent: p -counter >> 1
* child:(p -counter +1) >> 1

* Once scheduled, the running process is not preempted until the end
of its time slice

14

Revise getticks system call - |

" int getticks(int pid)
* The getticks system call returns the number of ticks used by the process pid

* The skeleton code already includes an implementation of the getticks() system call
for the default round-robin scheduler.

* Pre-implemented getticks system call doesn’t return the correct number of ticks
* So, you revise it

15

getticks system call - 2

" int getticks(int pid)
* If pid is positive, return the number of ticks used by the process.

* If pid is zero, return the number of ticks used by the calling process.

= return value
 On success, the number of ticks is returned.

e On error, -1 is returned.

16

Project #4 — submission

" |n this project, you have to submit a report explaining your
implementation. (+ source code)

* These must be included in your report.

* How to implement scheduling algorithm
— You must explain details about your schedule

* How to make sure the getticks() system call returns the correct number of ticks
* Schedtest? result (make gemu-log result, xvé6.log) and an explanation
* Schedtest2 image (make png result)

17

Project #4 — restrictions

= The CPUS is already set to | in the Makefile

" Your implementation should pass the following test programs available on xvé

* usertests
 schedtestl
e Schedtest2

* Do not add any system calls other than nice() and getticks()

* You only need to modify those files in the ./kernel directory

18

You may want to see...

= modification
* proc.c

* trap.c

" |n xv6 book
* Chapter 4.1 ~ 4.4 (about trap)
* Chapter 6 (about scheduling)

19

p-counter = ((20 - (p-nice)) >> 2) + 1

The init process’ nice is zero, which is the default value for p-nice, and
the counter is six according to the formula above.

When you first boot up, p—nice should be set to zero, and the counter

should be parent, child all 3 because it was inherited from init.

And because there is no runnable process,

xv6 kernel is booting

init: starting sh

$

1 (nice:@, counter:3) sleep
2 (nice:@, counter:3) sleep

1 (nice:@, counter:3) sleep
2 (nice:@, counter:3) sleep

1 (nice:@, counter:3) sleep
2 (nice:@, counter:3) sleep

1 (nice:@, counter:3) sleep
2 (nice:@, counter:3) sleep

1 (nice:@, counter:3) sleep
2 (nice:@, counter:3) sleep

20

Busy waiting

parent : p - counter >> 1

f:/)rk() child: (p - counter +1) >> 1
Sleeping ~ Init
(nice 0) 6| 3
] sh
Sleeping (nice 0) 3

boot Busy waiting

21

Blocked process

parent : p - counter >> 1

f})"k() child: (p - counter +1) >> 1
Sleeping init
(nice 0) 6133 |3 |3]°7
. sh
Sleeping (nice 0) =2 T T T
Process 1
Runnable (nice 0) 2 1 01 °

boot / New epoch
RUNNING

22

parent : p - counter >> 1

fork() child: (p - counter +1) >> 1

/
init
(nice 0) 6| 3| 3|3]|3]|7]|7

sh
(nice 0) 3| 1 1 1 6| 6
Process 1
(nice 0) 2111065
boot / New epoch
RUNNING

For runnable process p—counter = ((20 - (p-nice)) >> 2) + 1

For blocked process p—counter = (p—counter >> 1) +((20 - (p-nice)) >> 2) + 1

23

parent : p - counter >> 1

f:[)rk() child: (p - counter +1) >> 1
init
(nice0) |6 |3 (3|3 |37 |7 |..]17]19]9
sh
(nice 0) 3111|166]|..1619]9
Process 1
(nice 0) 211106 |5]..10]|6]|5
boot / New epoch New epoch
RUNNING

For runnable process p—counter = ((20 - (p-nice)) >> 2) + 1

For blocked process p—counter = (p—counter >> 1) +((20 - (p-nice)) >> 2) + 1

24

parent : p - counter >> 1

f:[)rk() child: (p - counter +1) >> 1
init
(nice 0) 6 | 3|3 |3 |3 |7 |7 |..171919{..]191]10]10
sh
(nice 0) 3111|1166 .16[919...]19]10]10
Process 1
(nice 0) 211]10|6|5|..10(6|5|..[]0]6]5
boot / New epoch New epoch New epoch
RUNNING

For runnable process p—counter = ((20 - (p-nice)) >> 2) + 1

For blocked process p—counter = (p—counter >> 1) +((20 - (p-nice)) >> 2) + 1

25

parent : p - counter >> 1

f:[)rk() child: (p - counter +1) >> 1
init
(nice 0) 6 | 3|3 |3 |37 |7 |..17[919]...]9]10{10]..]110111|11
sh
(nice 0) 3111|1166 |.16[919..19(10[10] ..[10|11]11
Process 1
(nice 0) 211]10|6|5|..10(6|5.[{0[6|5]|]..10]6]5
boot / New epoch New epoch New epoch New epoch
RUNNING

For runnable process p—counter = ((20 - (p-nice)) >> 2) + 1

For blocked process p—counter = (p—counter >> 1) +((20 - (p-nice)) >> 2) + 1

main(argc,

{

*argv[])

pidl, pid2, pid3, logger;

((pidl = fork()))

(>

((pid2 = fork())

1;

((pid3 =
1;

((logger =

sec =

pl = 3

t1, t2,
(€]

fork())

fork()) == 0)

p2 = 0, p3 = 0;
t3;

tl = getticks(pidl);
t2 getticks(pid2);
t3 = getticks(pid3);

printf(
pl = t1;
p2 = t2;
p3 = t3;
sleep(P *
sec += P;

);

, sec, tl - pl1, t2 - p2, t3 - p3);

sleep(200);

nice(pidl, -20);
nice(pid3, bH
sleep(300);

nice(pidl, 5);
nice(pid3, -4);
sleep(200);

nice(pidl, 5);
nice(pid3, -5);
sleep(300);

nice(pidl, 5);
nice(pid3, -5);
sleep(300);

sleep(100);
kill(logger);
kill(pidl);
kill(pid2);
kill(pid3);

wait(?);
wait(?);
wait(?);
wait(?);
exit(®);

27

* |f you have a process with a nice value of -20, 0,19 ,what order is it sche
duled? (PI:0,P2:0,P3:0 -> P1:-20, P2:0, P3:19)

i i Ticks
P KEARNEL =6 SEEEL 40 , counter:11) sleep 1init
- P P2 —e— P3
init: starti h , counter:11) sleep sh
;nl H Ztart;ng > 357 , counter:11) runble schedtest3
Schedtes counter:2) run schedtest3
e, 7, 7, 6 30 7

counter:6) runble schedtest3
counter:6) runble schedtest3
counter:11) runble schedtest3
18

i

5, 18, 18, 18
10, 18, 18, 18
15, 18, 18, 18
20, 18, 18, 18

251

i

:0
:0
:0
:0,
:0
:0
:0
1

0O =

20 A

25, 18, 18, 18 15 @, counter:11) sleep 1init

30, 28, 18, 7 :@, counter:11) sleep sh

35, 33, 18, 3 10 4 @, counter:11) runble schedtest3
49, 33, 18, 3 : | :-20, counter:3) run schedtest3
45, 33, 18, 3 :@, counter:6) runble schedtest3
50, 33, 18, 3 oL, , , , , , , :19, counter:1) runble schedtest3
55, 33, 18, 3 0 20 40 60 80 100 120 1@, counter:11) runble schedtest3
60, 33, 18, 3 18, 3

28

RUNNING

/
Process 1
(niced) | 6|54 |32|1T]|]0|0(0]|]0]J0(0]O0

Process 2
miceo) | 6|6|6|6|6]|6]|6]|5]4]|3]|2]|1]0

Process3 1 gl 6|6|6|6|6|6|6|6|6|6]|6]6
(nice 0)

new epoch

For runnable process p—counter = ((20 - (p-nice)) >> 2) + 1

end epoch

29

RUNNING

/
Process 1
(nice-20) (11109 | 8 (7|6 |54 |3|2(1T]0]0|0]O0|O0|0]O0]O0

Process 2
(nice 0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Process3 1 g l6|l6|6|6|6|6|6|6|6|6|6|5]4[3|2]1]0]0
(nice 19)

new epoch end epoch

For runnable process p—counter = ((20 - (p-nice)) >> 2) + 1

30

Why does the tick become like that at first?

xv6 kernel is booting

init: starting sh
$ schedtest ..

e, 7, 7, 6

5, 18, 18, 18

lo0, 18, 18, 18
15, 18, 18, 18
20, 18, 18, 18
25, 18, 18, 18
30, 28, 18, 7

35, 33, 18,
40, 33, 18,
45, 33, 18,
50, 33, 18,
55, 33, 18,
60, 33, 18,

w w wwww

Init : 3

Time Slice is not finished

and continues to run

| runnable l

schedtest : O

Lt Init - 6 — counter
pare child

sh: 3

sh : 1 schedtest : 2
schedtest : 1 P1: 1
runnable
schedtest : O P2 : 1
runnable
schedtest : O P3:0
ogger ‘0 runnable
runnable 31

Why does the tick become like that at first?

xv6 kernel is booting

init: starting sh

$ schedtest ..

0, 7(1+6), 7(1+6), 6(0+6)
5, 18, 18, 18

10, 18, 18, 18

15, 18, 18, 18

20, 18, 18, 18

25, 18, 18, 18

30, 28, 18, 7

35, 33, 18,
40, 33, 18,
45, 33, 18,
50, 33, 18,
55, 33, 18,
60, 33, 18,

w w wwww

Lt Init - 6 — counter
pare child

Init ; 7 sh:3

sh: 6

schedtest : 2

|

blocked processes

New epoch !!

schedtest : 1

P1

6

schedtest : O P2 : 6

runnable

schedtest : O

runnable

P3:6

schedtest : 6 ogger : 6

runnable

| runnable | runnable

32

Example — schedtest2

xv6 kernel is booting

init: starting sh 75, 27, 18, 6
$ schedtest2 80, 27, 18, 6
e, 7, 7, 6 85, 27, 18, 6
5, 18, 18, 18 -> phasel 99, 24, 18, 8
10, 18, 18, 18 95, 24, 18, 9 -> phase4
15, 18, 18, 18 100, 24, 18, 9
20, 18, 18, 18 105, 24, 18, 9
25, 18, 18, 18 110, 24, 18, 9
30, 28, 18, 7 115, 24, 18, 9
35, 33, 18, 3 -> phase2 120, 21, 18, 11
40, 33, 18, 3 125, 21, 18, 12 -> phase5
45, 33, 18, 3 130, 21, 18, 12
50, 33, 18, 3 135, 21, 18, 12
55, 33, 18, 3 140, 21, 18, 12
60, 27, 18, 5 145, 21, 18, 12
65, 27, 18, 6 -> phase3 150, 21, 18, 12
70, 27, 18, 6

phasel 0/0/0

phase2 -20/0/19

phase3 -15/0/15

phase4 -10/0/10

phase5 -5/0/5

40

Ticks

35

30 +

25

20 +

15 ~

10 ~

—

Pl

—e- P2 —e P3

20

40

60

80

T
100

T
120

T
140

33

160

= Even if you change the nice value to nice(), you do not need to change
the p->counter immediately.
* Just write the changed value when the p->nice value is used.

= What happens when there's a block in the middle ?
* p-counter = (p-counter >> 1) +((20 - (p-nice)) >> 2) + 1

" When timer interrupt is occurred, the p->counter value may become
once the p->counter value is reduced.

* |f runnable process is not available, continue waiting without starting
new epoch

34

Thank you!

= Any questions!

35

