
4190.307:

Operating Systems

Lab. 1

TA. YeouGyu Jeong

(81887821@snu.ac.kr)

System Software &
Architecture Lab.

Seoul National University

Spring 2020



2

▪ User space applications run with restricted privilege

▪ They have to request some operations to the OS

▪ System call is an exception that intentionally made by application for 

this purpose



3

▪ Machine mode

• Have full privilege

• CPU starts in machine mode

▪ Supervisor mode

• Allowed to execute privileged instructions

– Enabling and disabling interrupts

– Reading and writing the register that holds address of page table

– …

• The kernel runs in supervisor mode

▪ User mode

• User space applications runs in user mode



4

▪ In RISC-V an application can use “ecall” instruction

to invoke system call

▪ e. g.) Fork function in userspace

fork:
li a7, SYS_fork
ecall
ret



5

uservec usertrap usertrapret userret

kernel space

user space

ecall
exception

device interrupt

syscall

devintr

scause = 8?



6

▪ stvec:The address of trap handler

▪ sepc: Register to save program counter when a trap occurs

▪ scause:The reason of a trap

▪ sscratch:The address of trapframe

▪ satp: Current page table



7

▪ CPU runs trap handler saved in stvec register

▪ Program counter is saved to sepc register

▪ The reason of the trap is saved to scause register



8

▪ Saves all register values to trapframe

▪ Change satp(page table register) to kernel page table

▪ uservec is located on trampoline page

because changing page table is needed



9

user text
& data

user
stack

heap

trapframe

trampoline

0 MAXVA



10

▪ usertrap determines the cause of the trap, and handles it

▪ Set stvec to kernelvec

▪ Call syscall if the trap was caused by system call,

devintr if the trap was caused by device interrupt



11

▪ Gets system call number from a7 register saved in trapframe

▪ Calls system call handler

• e.g.) sys_fork function in kernel space

▪ Saves return value to a0 register in trapframe



12

▪ Saves kernel page table, kernel stack to trapframe

(To be used for next trap from user space)

▪ Restore stvec to refer uservec

▪ Restore sepc to previously saved user program counter



13

▪ Switches satp to process’s user page table

▪ Restores all register values from trapframe

▪ userret is also located on trampoline page

because changing page table is needed



14

▪ Your job is to implement process group and two system calls

▪ Why process group is needed?

• e.g.) tar -c file1 file2 | xz --threads=4 > files.tar.xz

• If you want to abort the job, two processes(tar and xz) must be 

interrupted together

▪ You have to implement:

• setpgid to set process group ID

• getpgid to get process group ID



15

▪ int setpgid(int pid, int pgid);

▪ setpgid should change the process group ID of process specified by 

pid to pgid

▪ pid and pgid are non-negative integers

▪ If pid is 0, it should change process group ID of the calling 

process(process that invoked the system call)

▪ If pgid is 0, it should change process group ID same as pid

▪ On success, return 0

▪ On failure, return -1



16

▪ int getpgid(int pid);

▪ getpgid should return process group ID of process specified by pid

▪ If pid is 0, it should return process group ID of the calling process

▪ On success, return pgid

▪ On failure, return -1



17

▪ xv6 prints list of processes when Ctrl+P is pressed

▪ You have to modify this to print pgid

• format: pid pgid state process_name



18

▪ defs.h

• For function definitions

▪ proc.h, proc.c

• For process related functions

▪ console.c

• For console input handling

▪ syscall.c, sysproc.c

• For system call implementation



19

▪ Please only modify Makefile and files in kernel directory

• Please fill your student id to STUDENTID variable in Makefile

• Modifications to user directory will be ignored by grading script

▪ Please remove all the debugging outputs before you submit



20

▪ Please read the project description carefully

• https://github.com/snu-csl/os-pa2

▪ Skeleton code is on xv6-riscv-snu repository’s pa2 branch

• git clone https://github.com/snu-csl/xv6-riscv-snu

• git checkout pa2

▪ Archive your source to tarball and submit it to sys server

• Type “make submit” to archive your source

• And upload it to https://sys.snu.ac.kr

https://github.com/snu-csl/os-pa2
https://github.com/snu-csl/xv6-riscv-snu
https://sys.snu.ac.kr/


21

▪ If you have any questions, feel free to ask us in KakaoTalk


