TA.YeouGyu Jeong
(81887821 @snu.ac.kr)

System Software &
Architecture Lab.

Seoul National University

Spring 2020

4190.307:
Operating Systems
Lab. |



What is system call?

» User space applications run with restricted privilege
* They have to request some operations to the OS

= System call is an exception that intentionally made by application for
this purpose



3 modes of RISC-V

= Machine mode
* Have full privilege
e CPU starts in machine mode

" Supervisor mode

* Allowed to execute privileged instructions
— Enabling and disabling interrupts
— Reading and writing the register that holds address of page table

* The kernel runs in supervisor mode

= User mode

* User space applications runs in user mode



ecall instruction

" |n RISC-V an application can use “ecall” instruction
to invoke system call

" e.g.) Fork function in userspace

fork:
11 a7, SYS_fork
ecall
ret




Traps from user space

ecall
exception
device interrupt

user space

kernel space

uservec usertrap

scause = 8?
s sSyscall

—

g usertrapret userret



Special RISC-V registers

= stvec: The address of trap handler

= sepc: Register to save program counter when a trap occurs
" scause: The reason of a trap

= sscratch: The address of trapframe

= satp: Current page table



On trap...

* CPU runs trap handler saved in stvec register
* Program counter is saved to S€pC register

* The reason of the trap is saved to scause register



USErvec

= Saves all register values to trapframe
* Change satp(page table register) to kernel page table

" uservec is located on trampoline page
because changing page table is needed



Virtual Address Space Layout

MAXVA

user text
& data

user
stack

heap

L

I— trampoline

trapframe



usertrap

= usertrap determines the cause of the trap, and handles it
= Set stvec to kernelvec

= Call syscall if the trap was caused by system call,
devintr if the trap was caused by device interrupt



syscall

" Gets system call number from a7 register saved in trapframe

= Calls system call handler
* e.g.) sys_fork function in kernel space

= Saves return value to a0 register in trapframe

11



usertrapret

= Saves kernel page table, kernel stack to trapframe
(To be used for next trap from user space)

» Restore stvec to refer uservec

* Restore sepc to previously saved user program counter



userret

= Switches satp to process’s user page table

= Restores all register values from trapframe

= userret is also located on trampoline page
because changing page table is needed

13



Project #2 — System call

" Your job is to implement process group and two system calls

* Why process group is needed?
« e.g) tar -c filel file2 | xz --threads=4 > files.tar.xz

* If you want to abort the job, two processes(tar and xz) must be
interrupted together
" You have to implement:
 setpgid to set process group ID
 getpgid to get process group ID

14



setpgid system call

= int setpgid(int pid, int pgid);

= setpgid should change the process group ID of process specified by
pid to pgid

= pid and pgid are non-negative integers

= |f pid is O, it should change process group ID of the calling
brocess(process that invoked the system call)

= |f pgid is O, it should change process group ID same as pid

= On success, return 0

= On failure, return -1



getpgid system call

int getpgid(int pid);
getpgid should return process group ID of process specified by pid

If pid is 0, it should return process group ID of the calling process

On success, return pgid

On failure, return -|



Displaying process list

= xvb prints list of processes when Ctrl+P is pressed

" You have to modify this to print pgid
e format: pld pgid state process_name

Xxvb kernel 1is booting

hart 1 starting
hart 2 starting
init: starting sh
1
2

sleep 1nit
sleep sh

1
1



You may want to see...

= defs.h

* For function definitions
" proc.h, proc.c

* For process related functions
= console.c

* For console input handling

= syscall.c, sysproc.c

* For system call implementation

18



When you do your project,

* Please only modify Makefile and files in kernel directory
* Please fill your student id to STUDENTID variable in Makefile

* Modifications to user directory will be ignored by grading script

* Please remove all the debugging outputs before you submit

19



* Please read the project description carefully
* https://github.com/snu-csl/os-pa2

* Skeleton code is on xvé6-riscv-snu repository’s pa2 branch

* git clone https://github.com/snu-csl/xvé-riscv-snu

* git checkout pa2

" Archive your source to tarball and submit it to sys server
* Type “make submit” to archive your source

* And upload it to https://sys.snu.ac.kr

20


https://github.com/snu-csl/os-pa2
https://github.com/snu-csl/xv6-riscv-snu
https://sys.snu.ac.kr/

Thank you!

* |f you have any questions, feel free to ask us in KakaoTalk



