Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2020

TLB

Address Translation Steps

* For each memory reference,

* Which steps are expensive!

Extract VPN from VA VA

VPN

Offset

Calculate the address of PTE
Read the PTE from memory
Extract PFN from PTE

Build PA -

Read contents of PA from memory into register

satp

PFN

]

PA

Offset

PFN

Memory

The Problem

= Address translation is too slow

* A simple linear page table doubles the cost of memory lookups
— One for the page table, another to fetch the data

* Multi-level page tables increase the cost further

» Goal: make address translation fast

* Make fetching from a virtual address about as efficient as fetching from a physical
address

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

TLB

= Translation Buffer

* A hardware cache of popular virtual-to-physical address translations

* Essential component which makes virtual memory possible

= TLB exploits locality

* Temporal locality: an instruction or data item that has been recently accessed will
likely be re-accessed soon
— Instructions and data accesses in loops, ...

. locality: if a program accesses memory at address x, it will likely soon
access memory near x

— Code execution, array traversal, stack accesses, ...

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

TLB Organization

= TLB is implemented in hardware

* Processes only use a handful of pages at a time

— 16~256 entries in TLB is typical

* Usually fully associative

— All entries looked up in parallel
— But may be set associative to reduce latency

* Replacement policy: LRU (Least Recently Used)
* TLB actually caches the whole PTEs, not just PFNs

Valid Tag (VPN)
1 0x1000
1 0x2400

0

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Value (PTE)
M| Prot PFN 0x1234
M| Prot PFN 0x8800

Address Translation with TLB

=1 ICPU

virtual

address

p

V| VPN

PTE

TLB hit

YYYYYY

TLB

TLB miss

v

Physical memory

frame O

frame 1

i

d

A 4
<
-

page table

physical
address

Handling TLB Misses

= Software-managed TLB
* CPU traps into OS upon TLB miss
* OS finds right PTE and loads it into TLB
* CPU ISA has (privileged) instructions for TLB manipulation
* Page tables can be in any format convenient for OS (flexible)

* Hardware-managed TLB

* CPU knows where page tables are in memory
— e.g.,CR3 (or PDBR) register in IA-32 / Intel 64, satp in RISC-V

* OS maintains page tables
* CPU “walks” the page table and fills TLB
* Page tables have to be in hardware-defined format

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

TLB on Context Switches

* Flush TLB on each context switch
* TLB is flushed automatically when PTBR is changed in a hardware-managed TLB

* Some architectures support the pinning of pages into TLB

— For pages that are globally-shared among processes (e.g., kernel pages)
— MIPS, Intel, etc.

* Track which entries are for which process
* Tag each TLB entry with an ASID (Address Space ID)

* A privileged register holds the ASID of the current process

* MIPS supports 8-bit ASID
— Why not use PID?
— What if there are more than 256 processes running?

* RISC-V supports up to |6-bit ASID for Sv39/Sv48 (stored in satp register)

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

TLB on Multi-core

= TLB coherence
* Page-table changes may leave stale entries in the TLBs
* Flushing the local TLB is not enough

* Unlike memory caches, TLBs of different cores are not maintained coherent by
hardware

* TLB coherence should be restored by the OS

= TLB

* The initiating core sends an IPI (Inter-Processor Interrupt) to the remote cores
* The remote cores invalidate their TLBs (may need to flush the entire TLB)

* The IPI may take several hundreds of cycles

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

TLB Performance

* TLB is the source of many performance problems

* Performance metric: hit rate, lookup latency, ...

" |ncrease TLB (= #TLB entries * Page size)

* Use superpages: e.g., 2MB, | GB page support in Intel 64
* Increase the TLB size

= Use multi-level TLBs

* e.g, Intel Haswell (4KB pages): LI ITLB 128 entries (4-way),
LI DTLB 64-entries (4-way), L2 STLB 1024 entries (8-way)

* Change your algorithms and data structures to be TLB-friendly

10

From CPU to Memory

= A process is executing on the CPU, and it issues a read to a virtual
address

VA TLB hit PA_ Memory

TLB miss age

page fault tables

inpnnn
0
o
C
inpnnn
\ 4
-
F
W

A 4

PTE

Data

Load Example

" The common case

The load instruction goes to the TLB in the MMU
TLB does a lookup using the page number of the address

The page number matches, returning a PTE
TLB checks the valid / protection bits in the PTE

TLB validates that the PTE protection allows loads

PTE specifies which physical frame holds the page

MMU combines the physical frame and offset into a physical address
MMU then reads from that physical address, returns value to CPU

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

12

Load: On TLB Miss

* Hardware-managed TLB
* MMU loads PTE from page table in memory
* OS has already set up the page tables so that the hardware can access it directly

* OS is not involved in this step

= Software-managed TLB
* Trap to the OS
* OS does lookup in page tables, loads PTE into TLB

* OS returns from exception

» At this point, there is a valid PTE for the address in the TLB.

= TLB restarts translation

13

Load: On Page Faults

* PTE can indicate a page fault
* Read/Write/Execute — operation not permitted on page

* Invalid — virtual page not allocated or page not in physical memory

= TLB traps to the OS

* Read/Write/Execute — OS usually will send fault back to the process, or might be
playing tricks (e.g., copy on write, mapped files)

* Invalid (Not allocated) — OS sends fault to the process (e.g., segmentation fault)

* Invalid (Not in physical memory) — OS allocates a frame, reads from disk, and maps
PTE to physical frame.

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

14

Integrating VM and Cache (I)

" Physically addressed cache

* Allows multiple processes to have blocks in cache

* Allows multiple processes to share pages

* Address translation is on the critical path

- = VA
=gl m=—— TLB

=,

page fault

Data

TLB hit PA
» Cache
TLB mliss Page Cache
| tables hit
PTE
| Data

PA ' Memory
—_—

Cache

m w

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

15

Integrating VM and Cache (2)

* Virtually addressed, virtually tagged cache

. problem

— Each process has a different translation of the same virtual address

* Address or aliases problem
— Two different virtual addresses point to the same physical address

- - TLB hit PA - Memory
- = VA VA g
=B S fl=— Cache > TLB
- - Cache
Iinnnn miss [
t . Page
TLB miss
Cache page fault tables
hit >
PTE
Data ! Data

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Integrating VM and Cache (3)

= Virtually addressed, physically tagged cache
* Use virtual address to access the TLB and cache in parallel

* TLB produces the PFN — which must match the physical tag of the accessed cache
line for it to be a “hit”

- = VA
3 lcrul Fammmng VPN offset
- - I
= - y v
LLNRL ’
| PA
TLB Page Cache —7—
page fault | . tables
TLB TLB l PFN
hit miss 4.<>_
Cache
Cache :
o o miss
PFN
Data | Data

