
Virtual Memory

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2020

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Transparency

• Processes should not be aware that memory is shared

• Provides a convenient abstraction for programming

(i.e. a large, contiguous memory space)

▪ Efficiency

• Minimizes fragmentation due to variable-sized requests (space)

• Gets some hardware support (time)

▪ Protection

• Protect processes and the OS from another process

• Isolation: a process can fail without affecting other processes

• Cooperating processes can share portions of memory

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Example

• What happens if two users simultaneously run this program?

#include <stdio.h>

int n = 0;

int main ()
{

n++;
printf (“&n = %p, n = %d\n”, &n, n);

}

% ./a.out
&n = 0x0804a024, n = 1
% ./a.out
&n = 0x0804a024, n = 1

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Process’ abstract view of memory

• OS provides illusion of private

address space to each process

• Contains all of the memory

state of the process

• Static area

– Allocated on exec()

– Code & Data

• Dynamic area

– Allocated at runtime

– Can grow or shrink

– Heap & Stack
kernel virtual memory

(code, data, heap, stack)

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused
0

memory
invisible to
user code

brk

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

N-1

stack
pointer

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Each process has its own virtual address space

• Large and contiguous

• Use virtual addresses for memory references

• Virtual addresses are private to each process

▪ Address translation is performed at run time

• From a virtual address to the corresponding physical address

▪ Supports lazy allocation

• Physical memory is dynamically allocated or released on demand

• Programs execute without requiring their entire address space to be resident in

physical memory

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Physical memory
0

P1’s address space

Heap

Stack

Data

Code

0

P2’s address space

Heap

Stack

Data

Code

physical address

virtual address 0x100

virtual address 0x100

physical address

Heap

Stack

Data

Code

Heap

Stack

Data

Code
address

translation
mechanism

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Software-based relocation

• OS rewrites each program before loading it in memory

• Changes addresses of static data and functions

0x0200: 0

0x0010: movl 0x0200, %eax
0x0015: addl $1, %eax
0x0018: movl %eax, 0x0200

0x1200: 0

0x1010: movl 0x1200, %eax
0x1015: addl $1, %eax
0x1018: movl %eax, 0x1200

0x5200: 0

0x5010: movl 0x5200, %eax
0x5015: addl $1, %eax
0x5018: movl %eax, 0x5200

rewrite

rewrite

0

0x1000

0x5000

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Pros

• No hardware support is required

▪ Cons

• No protection enforced

– A process can destroy memory regions of the OS or other processes

– No privacy: can read any memory address

• Cannot move address space after it has been placed

– May not be able to allocate a new process due to external fragmentation

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Hardware-based relocation

• MMU (Memory Management Unit) performs address translation on every memory

reference instructions

• Protection is enforced by hardware: if the virtual address is invalid, the MMU raises

an exception

• OS passes the information about the valid address space of the current process to

the MMU

▪ Implementations

• Fixed or variable partitions

• Segmentation

• Paging

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ Physical memory is broken up into fixed partitions

• Size of each partition is the same and fixed

• The number of partitions = degree of multiprogramming

0x4000

0x3000

0x1000

0x2000

0
0x2000

0x0362

Base register

Virtual address
0x2362

OS

Partition 0

+ Partition 1

Partition 2

Partition 3

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Hardware requirements: base register

• Physical address = virtual address + base register

• Base register loaded by OS on context switch

▪ Pros

• Easy to implement

• Fast context switch

▪ Cons

• Internal fragmentation: unused area in a partition is wasted

• Partition size: one size does not fit all

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Improvement

• Partition size needs not be equal

• Allocation strategies

– A separate queue for each partition size

– A single queue + first fit

– A single queue + best fit

• Used in IBM OS/MFT

(Multiprogramming with a

Fixed number of Tasks)

0x1000

0x2000

0x8000

0x4000

0
OS

Partition 0

Partition 1

Partition 2

Partition 3

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Physical memory is broken up into variable-sized partitions

• Used in IBM OS/MVT

Partition 1

Partition 2

Partition 3

+

OS

Partition 0

0x362

0x3200

Base register

Virtual address

<?
Yes

No

protection fault

0x2200

Limit register

0x1000

0x3200

0x8000

0x7000

0

0x3562

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Hardware requirements: base register + limit register

• The role of limit register: protection

▪ Pros

• Simple, inexpensive implementation

• No internal fragmentation

▪ Cons

• Each process must be allocated contiguously in physical mem

• External fragmentation:

– Holes are left scattered throughout physical memory

– Compaction can be used to reduce external fragmentation

• No partial sharing: cannot share parts of address space

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Divide address space into logical segments

• Each segment corresponds to logical entity in address space

– Code, data, stack, heap, etc.

• Users view memory as a collection of variable-sized segments, with no necessary

ordering among them

– Virtual address: <Segment #, Offset>

• Each segment can independently

– be placed separately in physical memory

– grow or shrink

– be protected (separate read/write/execute protection bits)

• Natural extension of variable partitions

– Variable partitions: 1 segment / process

– Segmentation: many segments / process

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Explicit approach

• Use a part of virtual address as a segment number

• The remaining bits mean the offset within the segment

• e.g., VAX/VMS system

▪ Implicit approach

• Determines the segment by the type of memory reference

– PC-based addressing: code segment

– SP- or BP-based addressing: stack segment

00: P0 (User code, data, heap)
01: P1 (User stack)
1X: S (System)

031

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Segment registers or table (per process)

Base Limit Dir Prot V

Code 0 0x8000 0x0800 Down RO-X 1

Data 1 0x8800 0x0400 Down RW 1

Heap 2 0x9000 0x0800 Down RW 1

Stack 3 0x7000 0x0800 Up RW 1

OS

Segment 3

<?
Yes

No

Segmentation violation

0x9000

0x7000

0x8000

0x8800

0

Segment 0
Segment 1

Segment 2

Virtual address

0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0

0x0362

+
0x8b62

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Enables sparse allocation of address space

• Stack and heap can grow independently

▪ Easy to protect segments

• Valid bit

• Different protection bits for different segments

– e.g., Read-only status for code, Kernel-mode-only for system segment

▪ Easy to share segments

• Put the same translation into base/limit pair

• Code/data sharing at segment level (e.g., shared libraries)

▪ Supports dynamic relocation of each segment

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Each segment must be allocated contiguously

• External fragmentation

• May not have sufficient physical memory for large segments

▪ Large segment table

• Keep in main memory

• Use hardware cache for speed

▪ Cross-segment addresses

• Segments need to have same segment number for pointers to them to be shared

among processes

• Otherwise, use indirect addressing only

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Separates user’s virtual memory from physical memory

• Abstracts main memory into a large, uniform array of bytes

• Frees programmers from the concerns of memory limitations

• Physical memory locations can be moved transparently

▪ The virtual address space is overcommitted

• Allows the execution of processes that may not be completely in memory

• Physical memory is allocated on demand

• Views the physical memory as a cache for the disk

▪ Easy to protect and share memory regions among processes

