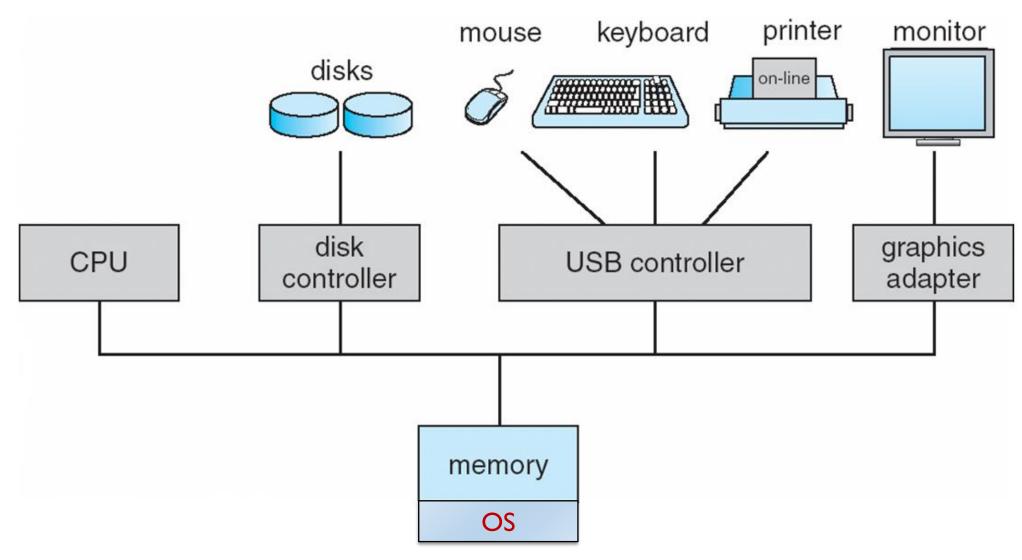
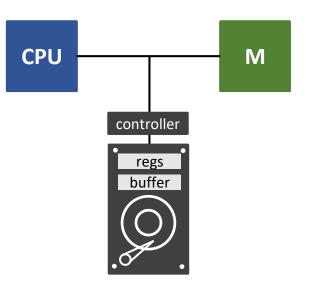
Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Systems Software & Architecture Lab.


Seoul National University

Spring 2020

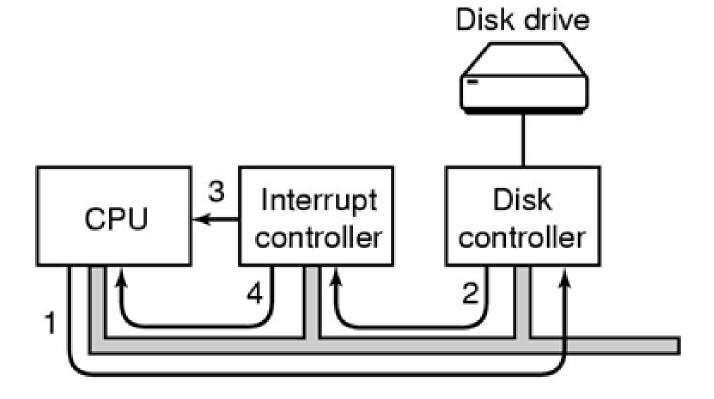
Architectural Support for OS



Computer System Organization

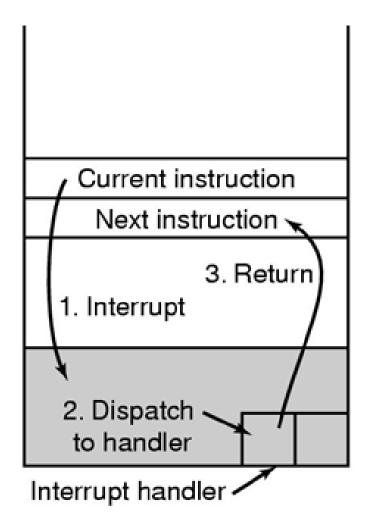
Issue #I: I/O

- How to perform I/Os efficiently?
 - I/O devices and CPU can execute concurrently
 - Each device controller is in charge of a particular device type
 - Each device has a local buffer
 - CPU issues specific commands to I/O devices
 - CPU moves data between main memory and local buffers



- CPU is a precious resource; it should be freed from time-consuming tasks
 - Checking whether the issued command has been completed or not
 - Moving data between main memory and device buffers

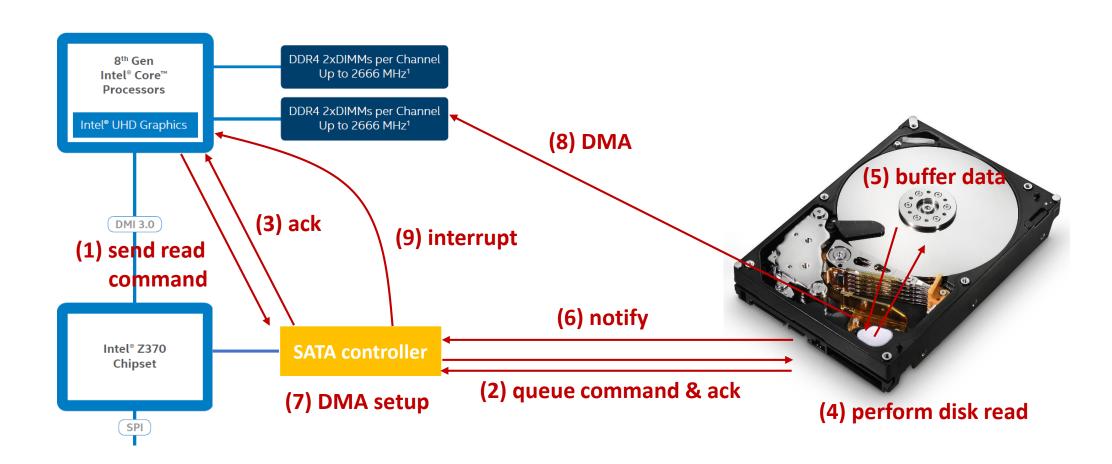
Interrupts


How does the kernel notice an I/O has finished?

• Hardware interrupt

Interrupt Handling

- Preserves the state of the CPU
 - In a fixed location
 - In a location indexed by the device ID
 - On the system stack
- Determines the type
 - Polling
 - Vectored interrupt system
- Transfers control to the interrupt service routine (ISR) or interrupt handler


Data Transfer Modes

- (PIO)
 - CPU is involved in moving data between I/O devices and memory
 - By special I/O instructions vs. by memory-mapped I/O
 - e.g., keyboard, mouse, ...

DMA (Direct Memory Access)

- Used for high-speed I/O devices to transmit information at close to memory speeds
- Device controller transfers blocks of data from the local buffer directly to main memory (or vice versa) without CPU intervention
- Only an interrupt is generated per block
- DMA controller oversees the overall data transfer

Disk I/O Example

Issue #2: Protection

- How to prevent user applications from harming the system?
 - What if an application accesses disk drives directly?
 - What if an application executes the HLT instruction?

HLT—Halt

Opcode	Instruction	Op/ En	64-Bit Mode	Compat/ Leg Mode	Description
F4	HLT	NP	Valid	Valid	Halt

Description

Stops instruction execution and places the processor in a HALT state.

Protected Instructions

- Protected or instructions
 - The ability to perform certain tasks that cannot be done from user mode
 - Direct I/O access
 - e.g. in / out instructions in x86
 - Accessing system registers
 - Control registers
 - System table locations (e.g. interrupt handler table)
 - Setting special "mode bits", etc.
 - Memory state management
 - Page table updates, page table base address, TLB loads, etc.
 - HLT instruction in x86

CPU Modes of Operation

- Kernel mode vs. user mode
 - How does the CPU know if a protected instruction can be executed?
 - The architecture must support at least two modes of operation: kernel and user mode
 - 4 privilege levels in IA-32: Ring 0 > 1 > 2 > 3
 - 4 privilege levels in ARM: EL3 > EL2 > EL1 > EL0
 - 3 privilege levels in RISC-V: Machine > Supervisor > User
 - Mode is set by a status bit in a protected register
 - IA-32: Current Privilege Level (CPL) in CS register
 - ARM: Mode field in CPSR register
- Protected instructions can only be executed in the corresponding privileged level

Issue #3: Servicing Requests

- How to ask services to the OS?
 - How can an application read a file if it cannot access disk drives?
 - Even a "printf()" call requires hardware access
 - User programs must ask the OS to do something privileged

System Calls

- OS defines a set of system calls
 - Programming interface to the services provided by OS
 - OS protects the system by rejecting illegal requests
 - OS may impose a quota on a certain resource
 - OS may consider fairness while sharing a resource
- A system call is a _____ procedure call
 - System call routines are in the OS code
 - Executed in the kernel mode
 - On entry, user mode → kernel mode switch
 - On exit, CPU mode is changed back to the user mode

System Calls Example

■ POSIX vs.Win32

Category	POSIX	Win32	Description
Process Management	fork	CreateProcess	Create a new process
	waitpid	WaitForSingleObject	Wait for a process to exit
	execve	(none)	CreateProcess = fork + exec
	exit	ExitProcess	Terminate execution
	kill	(none)	Send a signal
File Management	open	CreateFile	Create a file or open an existing file
	close	CloseHandle	Close a file
	read	ReadFile	Read data from a file
	write	WriteFile	Write data to a file
	1seek	SetFilePointer	Move the file pointer
	stat	GetFileAttibutesEx	Get various file attributes
	chmod	(none)	Change the file access permission
	mkdir	CreateDirectory	Create a new directory
	rmdir	RemoveDirectory	Remove an empty directory
File System	link	(none)	Make a link to a file
Management	unlink	DeleteFile	Destroy an existing file
	chdir	SetCurrentDirectory	Change the current working directory
	mount	(none)	Mount a file system

Exceptional Events

Interrupts

- Generated by hardware devices
 - Triggered by a signal in INTR or NMI pins (IA-32)
- Asynchronous

Exceptions

- Generated by software executing instructions
 - Unintentional: Divide-by-zero (unintentional)
 - Intentional: INT instruction in IA-32 or ecall instruction in RISC-V
- Synchronous
- Exception handling is same as interrupt handling

Exceptions in x86

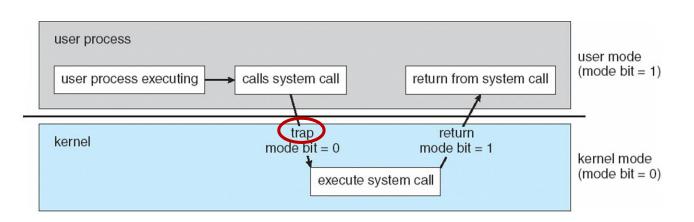
- Intentional
- System call traps, breakpoint traps, special instructions, ...
- Return control to "next" instruction

Faults

- Unintentional but possibly recoverable
- Page faults (recoverable), protection faults (unrecoverable), ...
- Either re-executing faulting ("current") instruction or abort

- Unintentional and unrecoverable (parity error, machine check, ...)
- Abort the current program

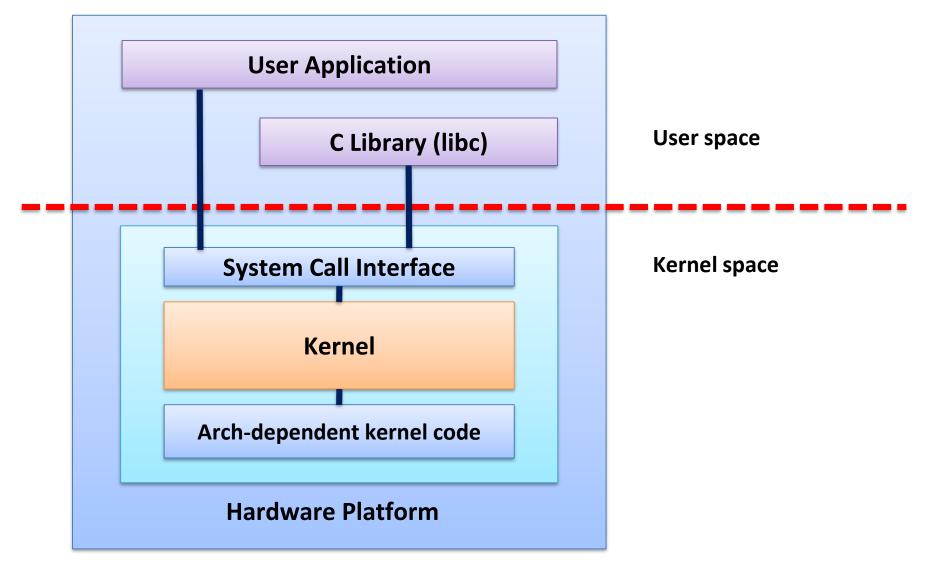
OS Trap


There must be a special "trap" instruction that:

- Causes an exception, which invokes a kernel handler
- Passes a parameter indicating which system call to invoke
- Saves caller's state (registers, mode bits)
- Returns to user mode when done with restoring its state
- OS must verify caller's parameters (e.g., pointers)

Examples:

INT instruction (IA-32)


ECALL instruction (RISC-V)

Implementing System Calls

Address 0xFFFFFFF Return to caller Library count = read (fd, buffer, nbytes); Trap to the kernel procedure Put code for read in register read User space 11 Increment SP Call read Push fd User program calling read Push &buffer Push nbytes Kernel space Sys call Dispatch (Operating system) handler

Typical OS Structure

Issue #4: Control

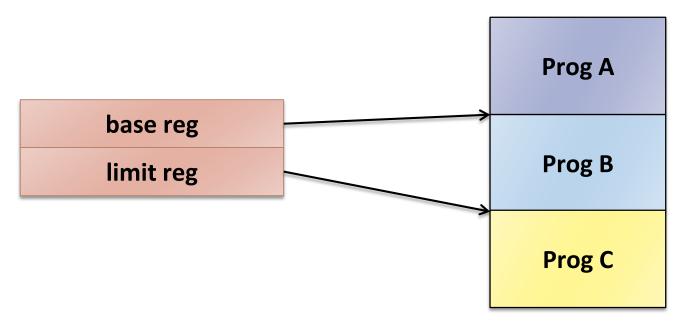
How to take the control of the CPU back from the running program?

Cooperative approach

- Each application periodically transfers the control of the CPU to OS by calling various system calls
- A special system call can be used just to release the CPU (e.g., yield())
- Can be used when ______
- What if a process ends up in an infinite loop?
 (due to a bug or with a malicious intent)

Timers

- A non-cooperative approach
 - Use a hardware timer that generates a periodic interrupt
 - The timer interrupt transfers control back to OS
- The OS preloads the timer with a time to interrupt
 - 10ms for Linux 2.4, Ims for Linux 2.6, 4ms for Linux 5.5
 - 10ms for xv6
- The timer is privileged
 - Only the OS can load it


Issue #5: Memory Protection

- How can we protect memory?
 - Unlike the other hardware resources, we allow applications to access memory directly without OS intervention. Why?
- From malicious users:
 OS must protect user applications from each other

For integrity and security:
 OS must also protect itself from user applications

Simplest Memory Protection

- Use base and limit registers
- Base and limit registers are loaded by OS before starting an application
- CPU generates an exception if the memory address is out of bound
- Can be used in a simple embedded environment

Virtual Memory

- Modern CPUs are equipped with memory management hardware
 - MMU (Memory Management Unit)
- MMU provides more sophisticated memory protection mechanisms
 - Virtual memory
 - Paging: page tables, page protection, TLBs
 - Segmentation: segment tables, segment protection
- Manipulation of MMU is a privileged operation

Issue #6: Synchronization

- How to coordinate concurrent activities?
 - What if multiple concurrent streams access the shared data?
 - Interrupt can occur at any time and may interfere with the interrupted code

```
LOAD R1 \leftarrow \text{Mem}[X]

ADD R1 \leftarrow R1, #1

LOAD R1 \leftarrow \text{Mem}[X]

ADD R1 \leftarrow R1, #1

STORE R1 \rightarrow \text{Mem}[X]
```

Turn off/on interrupts?

Atomic Instructions

Requires special atomic instructions

- Read-Modify-Write (e.g. INC, DEC)
- Test-and-Set
- Compare-and-Swap
- LOCK prefix in IA-32
- LL (Load Locked) & SC (Store Conditional) in MIPS

RISC-V"A" extension

- LR (Load Reserved) & SC (Store Conditional) instructions
- AMO (Atomic Memory Operation) instructions
 - Swap, integer add, bitwise AND/OR/XOR, integer max/min (signed/unsigned)

Summary

- The functionality of an OS is limited by architectural features
 - Multiprocessing on MS-DOS/8086?
- The structure of an OS can be simplified by architectural support
 - Interrupt, DMA, atomic instructions, etc.
- Most proprietary OSes were developed with the certain architecture in mind
 - SunOS/Solaris for SPARC
 - IBM AIX for Power/PowerPC
 - HP-UX for PA-RISC