
File Systems

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2020

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

User-level software

File System (Ext4, …)

POSIX API (open, read, write, …)

Generic Block Layer

Generic Block Interface (blk read, blk write)

Device Driver (SCSI, SATA)

Specific Block Interface (protocol-specific)

Disk interrupt handler

Library

HDD SSD

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Block interface abstraction

▪ Operations

• Identify(): returns N

• Read(start sector #, # of sectors, buffer addresses)

• Write(start sector #, # of sectors, buffer addresses)

512B 512B 512B

0 1 N-1

Source: Sang Lyul Min (Seoul National Univ.)

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ File

• A named collection of related information that is recorded on

persistent storage

• Each file has an associated inode number (internal file ID)

• Inodes are unique within a file system

▪ Directory

• Provides a structured way to organize files

• A special file used to map a user-readable file name to its inode

number: a list of <file name, inode number>

• Hierarchical directory tree: directories can be placed within

other directories

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ File contents (data)

• A sequence of bytes

• File systems normally do not care what they are

▪ File attributes (metadata or inode)

• File size

• Block locations

• Owner & access control lists

• Timestamps, …

▪ File name

• The full pathname from the root specifies a file

• e.g., open(“/etc/passwd”, O_RDONLY);

File name

Inode number

File metadata
(Inode)

File data

directory

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ <filename, data, metadata> → <a set of blocks>

meta1 meta2

“a.out” “sky.jpg”

1 323 1 2“

a.
o

u
t”

“

sk
y.

jp
g”

4

m
et

a1

m
et

a2

1

2

3

4

1

2

3

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Goals

• Performance, Reliability, Scalability, …

▪ Design issues

• What information should be kept in metadata?

• How to locate metadata from file name?

– Pathname → metadata

• How to locate data blocks?

– <Metadata, offset> → Data block

• How to manage metadata and data blocks?

– Allocation, reclamation, free space management, etc.

• How to recover the file system after a crash?

• …

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ POSIX Inode

• File type: regular, directory, char/block dev, fifo, symbolic link, …

• Device ID containing the file

• Inode number

• Access permission: rwx for owner(u), group(g), and others(o)

• Number of hard links

• User ID and group ID of the owner

• File size in bytes

• Number of 512B blocks allocated

• Time of last access (atime), time of last modification (mtime), time of last status

change (ctime)

• …

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

int open(char *pathname, int flags, mode_t mode);

int creat(char *pathname, mode_t mode);

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, void *buf, size_t count);

off_t lseek(int fd, off_t offset, int whence);

int close(int fd);

int fsync(int fd);

int rename(char *oldpath, char *newpath);

int unlink(char *pathname);

int stat(char *path, struct stat *buf);

int link(char *oldpath, char *newpath);

int symlink(char *oldpath, char *newpath);

int mount(char *source, char *target, char *fstype,

unsigned long mountflags, void *data);

int umount(char *target);

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ open(“/a/b/c”, …)
• Open directory “/” (well known, can always find)

• Search the directory entry for “a”, get location of “a”

• Open directory “a”, search for “b”, get location of “b”

• Open directory “b”, search for “c”, get location of “c”

• Open file “c”

• Permissions are checked at each step

▪ File system spends a lot of time walking down directory paths

• OS caches prefix lookups to enhance performance

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ File system buffers writes into memory (“page cache”)

• Write buffering improves performance

• Up to 30 seconds in Linux

• fsync() flushes all dirty data to disk, and tells disk to flush its write cache to the

media too

• Also flushes metadata information associated with the file

• fdatasync() does not flush modified metadata

int fd = open(“foo”, O_CREAT | O_WRONLY | O_TRUNC);
int rc = write(fd, buffer, size);
rc = fsync(fd);
close(fd);

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Hard link: $ ln old.txt new.txt

• Both pathnames use the same inode number

• Cannot tell which name was the “original”

• Inode maintains the number of hard links

• Deleting (unlinking) a file decreases the link count

• Inode is removed only when the link count becomes 0

• Does not work across a file system boundary

▪ Symbolic (or soft) link: $ ln –s old.txt new.txt

• The new file contains a reference to another file or directory in the form of an

absolute or relative pathname

• “Shortcut” in Windows

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ A file system must be mounted

before it can be available to

processes on the system

▪ Windows: to drive letters

• e.g., C:\, D:\, …

▪ Unix: to an existing empty

directory (“___________”)

• Different file systems can be

mounted in the same tree

• Forms a large, single directory tree

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Unix semantics

• Files can be shared among processes

• Writes to an open file are visible immediately to other users that have this file

open at the same time

▪ AFS _________ semantics

• Writes to an open file are not visible immediately

• Once a file is closed, the changes made to it are visible only in sessions starting

later

▪ Immutable-shared-files semantics

• Once a file is declared as shared by its creator, it cannot be modified

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Storage

• Abstraction: a sequence of fixed-size blocks

• read(# start sector, # of sectors to read, buffer addresses)

• write(# start sector, # of sectors to write, buffer addresses)

▪ File system

• Abstraction: a hierarchy of variable-size files and directories

• open(pathname, flags)

• read(file descriptor, size in bytes to read, buffer address)

• write(file descriptor, size in bytes to write, buffer address)

• close(file descriptor)

