Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2020

Locks

The Classic Example

* Withdrawing money from a bank account

* Suppose you and your girl (or boy) friend share a bank account with a balance of
1,000,000won

* What happens if both go to separate ATM machines and simultaneously withdraw
100,000won from the account?

int withdraw(account, amount)

{
balance = get balance(account);
balance = balance - amount;
put_balance(account, balance);
return balance;

The Classic Example: Problem

* The execution of the two threads can be interleaved, assuming
preemptive scheduling:

balance = get_balance(account);

Execution balance = balance - amount; DContext
sequence switch
as seen by balance = get balance(account);
CPU balance = balance - amount;
put_balance(account, balance); Context
switch

put_balance(account, balance);

The Real Example

extern long g;

void inc() {
g++;

¥

Thread T1

1d af, 0(sl)
addi a@, a0, 1
sd a0, 0(sl)
ret

Thread T2

1d a0, 0(sl1)
addi a0, a0, 1

sd a0, 0(sl1)

context switch
1d a0, 0(sl)

addi a0, a0, 1
sd a0, 0(sl)

context switch

Sharing Resources

" | ocal variables are not shared among threads
e Refer to data on the stack
 Each thread has its own stack

* Never pass/share/store a pointer to a local variable on another thread’s stack

" Global variables are shared among threads

* Stored in static data segment, accessible by any thread

* Dynamic objects are shared among threads
* Stored in the heap, shared through the pointers

* Also, processes can share memory (shmem)

Synchronization Problem

= Concurrency leads to non-deterministic results

* Two or more concurrent threads accessing a shared resource create a
condition

* The output of the program is not deterministic; it varies from run to run even with
same inputs, depending on timing

* Hard to debug (“Heisenbugs”)

" We need synchronization mechanisms for controlling access to shared
resources

* Synchronization restricts the concurrency

* Scheduling is not under programmer’s control

Concurrency in the Kernel

User
Space

system call handlers

interrupt handlers

-

background
kernel threads

Hardware

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Critical Section

= A critical section is a piece of code that accesses a shared resource,
usually a variable or data structure

1d a@, 0(sl)
addi a0, a0, 1 > critical section

sd a@, 0(sl)

= Need for critical sections

* Execute the critical section atomically (all-or-nothing)

* Only one thread at a time can execute in the critical section
* All other threads are forced to wait on entry

* When a thread leaves a critical section, another can enter

Locks

" A lock is an object (in memory) that provides mutual exclusion with the
following two operations:
* acquire(): wait until lock is free, then grab it

* release(): unlock and wake up any thread waiting in acquire()

= Using locks

* Lock is initially free
Call acquire() before entering a critical section,and release() after leaving it

acquire() does not return until the caller holds the lock

On acquire(), a thread can spin (spinlock) or block (mutex)

At most one thread can hold a lock at a time

Using Locks

S1
S2
S3

int withdraw(account, amount)

{

acquire(lock);

balance = get balance(account);
balance = balance - amount;
put_balance(account, balance);
release(lock);

return balance;

Thread T1

Thread T2

A R

A S1 S2 S3 R

A S1 S2 S3 R

critical
section

Requirements for Locks

= Correctness
* Mutual exclusion: only one thread in critical section at a time

. (deadlock-free): if several threads want to enter the critical section,
must allow one to proceed
* Bounded waiting (): must eventually allow each waiting thread to
enter
= Fairness

* Each thread gets a fair chance at acquiring the lock

" Performance

* Time overhead for a lock without and with contentions (possibly on multiple
CPUs)?

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

11

An Initial Attempt

* An initial implementation of a spinlock

struct lock { int held = 0; }

void acquire(struct lock *1) {

while (1->held);
<—
1->held = 1;

}

void release(struct lock *1) {
1->held = ©;

}

The caller “busy-waits”,
—— or spins for locks
to be released

Does this work!?

12

Implementing Locks

= Software-only algorithms
* Dekker’s algorithm (1962)
* Peterson’s algorithm (1981)
* Lamport’s Bakery algorithm for more than two processes (1974)

* Hardware atomic instructions
* Test-And-Set
* Compare-And-Swap
* Load-Linked (LL) and Store-Conditional (SC)
* Fetch-And-Add

= Controlling interrupts

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

13

Software-only Algorithm

* The second attempt to implement spinlocks
e Note: each load and store instruction is atomic

int interested[2];

void acquire(int process) {
int other = 1 - process;
interested[process] = TRUE;
while (interested[other]);

¥

void release(int process) {
interested[process] = FALSE;

Does this work!?

14

Peterson’s Algorithm

" Solves the critical section problem for two processes

int turn;
int interested[2];

void acquire(int process) {
int other = 1 - process;
interested[process] = TRUE;
turn = other;
while (interested[other] &&

¥

void release(int process) {
interested[process] = FALSE;

¥

e

Test-And-Set

= Atomic instructions

* read-modify-write operations guaranteed to be executed “atomically”

= Test-And-Set instruction

* Returns the old value of a memory location while simultaneously updating it to the
new value

* e.g,Xchg in x86 (amoswap in RISC-V): exchange memory with register

int TestAndSet(int *v, int new) {
int old = *v;
*V = new,;
return old;

}

16

Using Test-And-Set

= A simple spinlock using Test-And-Set instruction
* Refer to spinlock.h and spinlock.c in xvé

struct lock { int held = 0; }

void acquire(struct lock *1) {
while (1->held);
1->held = 1;

}

void release(struct lock *1) {
1->held = 0;
}

struct lock { int held = 0; }

void acquire(struct lock *1) {
while (TestAndSet(&l->held, 1));

}

void release(struct lock *1) {
1->held = 0;
}

17

Compare-And-Swap

= Supported in x86, Sparc, etc.

* Update the memory location with the new value only when its old value equals to
the “expected” value

* e.g.,cmpxchg in x86: compare and exchange

int CompareAndSwap(int *v, int expected, int new) {
int old = *v;
if (old == expected)
*V = new;
return old;

¥

void acquire(struct lock *1) {
while (CompareAndSwap(&l->held, 5));

}

LL & SC

= Supported in MIPS, Alpha, PowerPC,ARM, RISC-V, etc.

* Load-Locked(LL) fetches a value from memory

* Store-Conditional(SC) succeeds with returning | if no intervening store to the
address has taken place

* Otherwise, SC returns 0 without updating the memory

void acquire(struct lock *1) {
while (1) {
while (LL(&l->held));
if (SC(&1l->held, 1)) return;

}

}

void release(struct lock *1) {
1->held = ©;

}

19

Fetch-And-Add

= Supported in x86, RISC-V, etc.

* Atomically increments a value while returning the old value

* e.g.,Xadd in x86: exchange and add

int FetchAndAdd(int *v, int a) {
int old = *v;
*v = old + a;
return old;

}

20

Ticket Locks Using Fetch-And-Add

" First get a ticket and wait until its turn

* Provides bounded waiting

struct lock {
int ticket = 0;
int turn = 0;
}s
void acquire(struct lock *1) {

int myturn = FetchAndAdd(&l->ticket, 1);
while (l->turn != myturn);

}

void release(struct lock *1) {
1->turn = 1->turn + 1;

}

Controlling Interrupts (1)

= Disable interrupts for critical sections

void acquire(struct lock *1) {
cli(); // disable interrupts;

¥

void release(struct lock *1) {
sti(); // enable interrupts;

¥

Disabling interrupts blocks external events that could trigger a context switch

The code inside the critical section will not be interrupted
There is no state associated with the lock
intr off() and intr_on() vs.push off() and pop_off() in xvé

Can two threads disable interrupts simultaneously?

22

Controlling Interrupts (2)

* Pros
* Simple

* Useful for a single-processor system

= Cons

* Only available to kernel
— Why not provide them as system calls?

* Insufficient on multi-processor systems
— Back to atomic instructions

* When the critical section is long, important interrupts can be delayed or lost
(e.g. timer, disks, etc.)

* Slower than executing atomic instructions on modern CPUs

4190.307: Operating Systems | Spring 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Summary

= Spinlocks are horribly wasteful

If a thread is spinning on a lock, the thread holding the lock cannot make progress

The longer the critical section, the longer the spin

CPU cycle is wasted

Greater the chances for lock holder to be interrupted through involuntary context
switch

" Spinlocks (and disabling interrupts on a single CPU) are primitive
synchronization mechanisms
* They are used to build higher-level synchronization constructs

24

