Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2023

Functions

Functions

The heart of effective problem solving is problem decomposition
* Breaking a problem into small, manageable pieces

* In C, the function construct is used to implement this "top-down" method of
programming

A program consists of one or more files
Each file contains zero or more functions
One of functions is a main() function

Program execution begins with main(), which can call other functions

Function Definition (1)

type function_name(/* function header */

{

declarations /* function body */
statements

= A function definition starts with the type of the function
* If no value is returned, then the type is void
* If NOT void, then the value returned by the function will be converted, if
necessary, to this type
* Parameter list
* A comma-separated list of declarations

* Formal parameters of the function

Function Definition

##tinclude <stdio.h>
##tinclude <assert.h>

int fact(int
int 1,

) 1

for (2;
return

main(void) {
int n, m,

scanf (" Y,
assert(0
assert()5
fact(n)
printf("%dC%d =
return 0;

, &m);
0);

(fact(m) * fact(

J J J)J

));

Function Definition (3)

void nothing(void) { } /* This function does nothing */

double twice(double x)
{

¥

return 2.0

/* If a function definition does not specify the
function type, it is int by default */
all add(int a, int b)

return (

Why Functions!?

= Why write programs as collections of many small functions?

" |t is simpler to correctly write a small function to do one job
* Easier writing and debugging

" |t is easier to maintain or modify such a program

= Small functions tend to be self-documenting and highly readable

* Functions can be reused

return Statement (|)

= return;
return expression;

= When a return statement is encountered,
* execution of the function is terminated and

* control is passed back to the calling environment

* return;
return ++a;
return a * b;

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

return Statement (2)

float f(char a, char b, char c) {

int 5
return i; /* value returned will be converted to a float */

}

double abs value(double x) {
if (©.0) return x;
else return ;

}

int main()
int c;

while (...) {
getchar(); /* Even though a function returns a value, */

/* a program does not need to use it </
getchar();

Function Prototypes

* Functions should be declared before they are used

* Function prototype:

type function _name(

(e.g.) double sqgrt(double);

Tells the compiler the number and types of arguments passed to the function

Tells the type of the value returned by the function

Allows the compiler to check the code more thoroughly

|dentifiers are optional
void f(char ¢, int i); < void f(char, int);

Styles for Function Definition Order (I)

* #include and #define at the top of file
= typedef

* Enumeration types, structures, and unions
= A list of function prototypes

* Function definitions, starting with main()

Styles for Function Definition Order (2)

##tinclude <stdio.h>

#define N 7 #include <stdio.h>

void prn_header(void); #define N 7

long power(int, int);

void prn_tbl of powers(int); vese [P neReEn(wenel) i

N |
. . :)
. Eiinézgégz(§- long power(int m, int n) {
—_—) ’ "
prn_tbl of powers(N); J5 o B

: }
} return 0; void prn_tbl powers(int n) {

int i, 7;
/¥ ... %/
e printf("%1d", power(i, j);)
}) /¥ ... %/
{ }
} .. int main(void) {
) q prn_header();
prn_tbl of powers(N);
return 9;

void prn_header(void) {

long power(int m, int

void prn_tbl powers(int

printf(" ", power(i, 7);)

Call-by-Value (1)

* When program control encounters a function name,
* the function is called, or invoked: the program control passes to that function

* After the function does its work, the program control is passed back to the calling
environment

" Functions are invoked
* by writing their name and a list of arguments within ()

= All arguments for a function are passed "call-by-value”
* Each argument is evaluated, and its value is used locally
* The stored value of that variable in the calling environment will NOT be changed

12

Call-by-Value (2)

#include <stdio.h>

, , int compute_sum(int n)
int compute_sum(int n); fn prototype */ (
. : . 0;
int main(void)

{
3,

printf(" ", n); 3 is printed */
compute sum(n); 3 is printed */

printf(" ", n); 6 is printed */

printf("

return 0;

Developing a Large Program ()

" A large program is typically written in a collection of .h and . c files

#tinclude <stdio.h> lude h"
#include <stdlib.h> #1nclude “pgm.

void fctl(int n) {
int i;

#tdefine \

void fctl(int k);
void fct2(void);
void wrt_info(char

printf("Hello from fctl()\n");
)3 for (0; ;)
’ fct2();
}

void fct2(void) {

int main(void) { printf("Hello from fct2()\n");
char ; }
int) N;

#include "pgm.h"

printf("Do you need any help? "
scanf("%c",); #include "pgm.h"
if ('y’ YY)
wrt_info("pgm"); void wrt_info(char) A
for (9; 5) printf("Usage: ",
fctl(i); printf("Help messages go here...");
return 0;

Developing a Large Program (2)

pgm.h

#include ...
#tdefine ...

List of function prototypes

main.c fct.c

#include "pgm.h"

#include "pgm.h" #include "pgm.h"

* Because pgm.h occurs at the top of each . c file, it acts as the "glue"
that binds our program together
$ gcc -o pgm main.c fct.c wrt.c

15

Storage Classes

* Every variable and function in C have two attributes:
type and storage class

" Four storage classes
* auto
* register
e extern
e static

16

Storage Class auto

* The most common storage class for variable

" Variables declared within function bodies are automatic by default
* When a block is entered, the system allocates memory for the automatic variables
* These variables are “local” to the block
* When the block is exited, the memory is automatically released (the value is lost)

void f(int m)
{

int a, b, c;
float f;

17

Storage Class register

= Tells the compiler that the associated variable should be stored in high-
speed registers

= Aims to improve execution speed

* Declare variables most frequently accessed as register

int main()

{

register int i;
for (0; 10;

{
¥

/* block exit will free the register */

18

Storage Class extern (I)

* One method of transmitting information across blocks and functions is
to use external variables

= When a variable is declared outside a function,

* Storage is permanently assigned to it
* |ts storage class is extern

* The variable is “global” to all functions declared after it

" |nformation can be passed into a function two ways
* By use of external variables

* By use of the parameter mechanism

19

Storage Class extern (2)

#include <stdio.h>

int 1, 2, 3; global variables */
int f(void);

int main(void)
printf(" ", FO)s 12 printed */
printf(" Y, ; 4 2 3 printed */
return 9;
f(void)

b and ¢ are local */

global b, ¢ are masked */
return (

Storage Class extern (3)

#include <stdio.h>

int 1, 2, ; /* global variables */
int f(void);

int main(void)

{

main.c

printf(" /* 12 printed */
printf(" ; /* 4 2 3 printed */
return 0;

f(void)

extern int a; /* look for it elsewhere */
4 The keyword extern is used to tell the
return (; : compiler to “look for elsewhere,
either in this file or in some other file.”

Storage Class static

Allows a local variable to retain its previous value when the block is
reentered

" |n contrast to ordinary auto variables

id f id
\{/Ol SRR * The first time the function () is

static int ; invoked cnt is initialized to zero

* On function exit, cnt is preserved in
memory

* Whenever () is invoked again, cnt is
not reinitialized

22

Default Initialization

= external and static variables

* Initialized to zero by the system, if not explicitly initialized by the programmer

= auto and register variables
* Usually not initialized by the system
* Have “garbage” values

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

23

Block Scope Rules (1)

= Basic rules of scoping

* |dentifiers are accessible only within the AN e nted

block in which they are declared
inner block a */

* They are unknown outside the boundaries ", a); 5 printed */
of that block . ; 3 printed */

= Nested blocks

* An outer block name is valid unless an
inner block redefines it

e |f redefined, the outer block name is
hidden, or masked, from the inner block

24

Block Scope Rules (2)

int main(void)
{
1, 2,
printf("
{
int 4;
float 5.0;
printf(" g - 14 5.0 */

J

{

int c;

printf(" " ; 4 4 4 */

}
printf(" " ; 4 4 5.0 %/

}
printf(" " ; 423 %/

Block Scope Rules (3)

= Parallel blocks
 Two blocks can come one after another
e The 2" block has no knowledge of the variables declared in the |5t block

* Why blocks?

* To allow memory for variables
inner block 1 */
to be allocated where needed ; int a is known, but not int b */

e Block exit releases the
allocated storage inner block 2 */

int b is known, but not int a */
nothing in inner block 1 is known */

26

Declaration vs. Definition

" Declaration

* Variable declaration: specifies the variable name and
its type

* Function declaration: specifies the function name, the
number and type of arguments and its return type

* A variable or a function can be declared any number
of times

" Definition
* A declaration that also causes memory to be

reserved for the variable or function

* A variable or a function can be defined only once

extern int

extern int calc(int, int);
double f(double, double);

int
int

{

J

calc(int

static int

J

return (

J

, 1nt

)

)

27

Lifetime vs.Visibility
| scope | Type | StorageClass | Lfetme | Visibility

Block

File

Variables

Variables

Functions

auto
register
static
extern

extern
static
extern

static

Block start ~ end
Block start ~ end
Program start ~ end
Program start ~ end

Program start ~ end

Program start ~ end

Program start ~ end

Program start ~ end

Within the block
Within the block
Within the block
Within the block

Remainder of source file

Remainder of source file
(single source file only)

Remainder of source file

Remainder of source file
(single source file only)

Recursion

= A function is recursive if it calls itself, either directly or indirectly

#include <stdio.h>

int fact(int n)
{

if (1)
return 1;
else
return fact(n-1);

main(void)

printf("%d! ", 5, fact(5));
return 0;

29

Fibonacci Sequence

" =0 fi=1 fa=fo-1t+fa2(n =2)

#include <stdio.h>

int fib(int n)
{

if (1)
return n;
else
return fib(n-1)

}
int main(void) (fib(2) | [fib(1)| |fib(1) | |fib(e)]

{ int i; !////\\\\x
for (0; 10; [fib(l)] [fib(@)]
printf("fib(

30

Tower of Hanoi ()

* Tower of Hanoi game

There are three towers labeled A, B, and C
The game starts with n disks

The object of the game is to move all disks on
tower A to tower C

Restriction: a larger disk cannot be placed on a
smaller disk

Task of transferring the n disks from tower A to
tower C

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

A B C

J:L move(n, A, B, C)

31

Tower of Hanoi (2)

ﬁ move(n-1, A, C, B) | ’_L_‘
A B

@ move a disk on A to C

i move(n-1, B, A, C) | |
B C

A B C A

C

Tower of Hanoi (3)

##tinclude <assert.h>
##tinclude <stdio.h>

int 0;
void move(int, char, char, char);

int main(void)

{
int n;
printf("Input n (»>0): ");
scanf("%d",);
assert(0);
move(n, ‘A", '
return 0;

B', 'C');

void move(int n, char

{

, char

if (1)
{

: Move disk from tower

» 1,))3

printf("

}

else

{

move(1) J J);

J
printf("%d: Move disk from tower

))))3
move(1,));

Tower of Hanoi (4)

A
A
C
A
B
B
A

34

Bisection ()

* Finding a root of a function

* For a continuous function f(x),when f(a) * f(b) < 0, there is at least one root in
la, D]

fx) Sx) JSx)

Nl lonl]

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 35

Bisection (2)

##tinclude <assert.h>
##tinclude <stdio.h>
##tinclude <math.h>

int 0;
const double le-13;
double f(double x);

double bisection(double a,

{
double () 2.

if (f(m) 0.0
return m;
else if (f(a)*f(m) 0.0)
return bisection(a,
else
return bisection(m,

double

9;

)s
)2

double f(double x)

{
¥

return pow(x, 3)

int main(void)

{

double 10.0, 10.0;
double 5

assert(f(a)*f(b) 0.9);
bisection(a, b);

printf("No. of calls: :

printf("root: , f(root):

Mathematical Functions

= #include <math.h> (Alsoadd"-1m" to link with the math library)
______ Defined function prototype | Functoncall | Meaning

double cos(double x); cos(expr) CoS X

double sin(double x); sin(expr) sin x

double tan(double x); tan(expr) tan x

double acos(double x); acos(expr) acos x

double asin(double x); asin(expr) asin x

double atan(double x); atan(expr) atan x

double exp(double x); exp(expr) e*

double log(double x); log(expr) log, x

double logle(double x); logle(expr) log1 x

double ceil(double x); ceil(expr) [x] (the smallest integer not less than x)
double floor(double x); floor(expr) |x] (the largest integer not greater than x)
double fabs(double x); fabs (expr) | x|

double fmod(double x, double y); fmod(exprl, expr2) x (mod y)

double pow(double x, double y); pow(exprl, expr2) xY

double sqrt(double x); sqrt(expr) N

37

Using Assertions

= assert(expr)
* In the standard header file assert.h
* If expr is false, the system will print a message, and the program will be aborted
* This can be used to ensure that the value of expression is what you expect it to be
* Add robustness to the code

int f(int a, int b)
{

assert(1 1); /* the value of a should be either 1 or -1 */
assert(b>=7 11); /* the value of b should be in [7, 11] */

Enter two numbers: 1 1
a.out: assert.c:6: f: Assertion b>=7 && b<=11l' failed.

Aborted (core dumped)

38

printf()

* printf(format_string, other_arguments)
* |n the standard header file stdio.h

* (e.g.) printf("she sell %d %s for %f", 99, "sea shells", 3.77);
conversion spec.
* Conversion specification

— How the corresponding argument is printed
— Begins with % and ends with a conversion character

e Conversion character

C as a character e as a floating-point number (e.g., 7.123000e+00)
as a decimal integer
¢ 2 E as a floating-point number (e.g., 7.123000E+00)
u as an unsigned decimal integer
, . f as a floating-point number (e.g., 7.123000)
o as an unsigned octal integer

X, X asan unsigned hexadecimal integer S as a string

39

o
prlntf() Assume: int i = 123; double x = 28.123456789;

char ¢ = 'A', str[] = "Blue moon!"
e L v L e
"123" field width 3 by default (minimum field width)
%05d i "90123" padded with zeros, field width 5
%70 i " 173" field width 7, right adjusted (default), octal
%-9X i "7b " left adjusted, hexadecimal
%-#9x i "Ox7b " left adjusted, Ox prepended, hexadecimal
%t X "28.123457" six digits at the right of the decimal point by default
%11.5f X " 28.12346" field width 11, precision 5
%-14.5e X "2.81235e+01 " field width 14, precision 5, left adjusted, e-format
%C C "A" field width 1 by default (one character)
%2cC C " A" field width 2, right adjusted (default)
%-3¢C C "A " field width 3, left adjusted
%S str "Blue moon!" field width 10 by default (the number of chars in the string)
%3s str "Blue moon!" If the specified field width is too short, the field width becomes default
%.6S str "Blue m" precision 6 (the maximum number of characters to be printed)

%-11.8s str "Blue moo " precision 8, field width 11, left adjusted

40

scanf()

= scanf(format_string, other_arguments)
* |n the standard header file stdio.h

char
int
double

scanf("

* Conversion character

C a character, including white space f
d a decimal integer (int) 1f
1d a decimal integer (long) S

a floating-point number (float)
a floating-point number (double)

a string

41

	슬라이드 1: Functions
	슬라이드 2: Functions
	슬라이드 3: Function Definition (1)
	슬라이드 4: Function Definition (2)
	슬라이드 5: Function Definition (3)
	슬라이드 6: Why Functions?
	슬라이드 7: return Statement (1)
	슬라이드 8: return Statement (2)
	슬라이드 9: Function Prototypes
	슬라이드 10: Styles for Function Definition Order (1)
	슬라이드 11: Styles for Function Definition Order (2)
	슬라이드 12: Call-by-Value (1)
	슬라이드 13: Call-by-Value (2)
	슬라이드 14: Developing a Large Program (1)
	슬라이드 15: Developing a Large Program (2)
	슬라이드 16: Storage Classes
	슬라이드 17: Storage Class auto
	슬라이드 18: Storage Class register
	슬라이드 19: Storage Class extern (1)
	슬라이드 20: Storage Class extern (2)
	슬라이드 21: Storage Class extern (3)
	슬라이드 22: Storage Class static
	슬라이드 23: Default Initialization
	슬라이드 24: Block Scope Rules (1)
	슬라이드 25: Block Scope Rules (2)
	슬라이드 26: Block Scope Rules (3)
	슬라이드 27: Declaration vs. Definition
	슬라이드 28: Lifetime vs. Visibility
	슬라이드 29: Recursion
	슬라이드 30: Fibonacci Sequence
	슬라이드 31: Tower of Hanoi (1)
	슬라이드 32: Tower of Hanoi (2)
	슬라이드 33: Tower of Hanoi (3)
	슬라이드 34: Tower of Hanoi (4)
	슬라이드 35: Bisection (1)
	슬라이드 36: Bisection (2)
	슬라이드 37: Mathematical Functions
	슬라이드 38: Using Assertions
	슬라이드 39: printf()
	슬라이드 40: printf()
	슬라이드 41: scanf()

