Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2023

Fundamental Data Types

Declaration, Expression, Assighment

" Variables and constants are the objects that a program manipulates

= All variables must be declared before they can be used

#include <stdio.h>

int main(void)

{

int a, b, c; declaration */
float x, 3.3, 7.7; declaration */

printf("Input two integers: "); function call */

scanf (" ° 5); function call */
assignment */
assignment */

Declarations

" Associate a type with each variable declared

* This tells the compiler to set aside an appropriate amount of memory
space to hold values associated with variables

* This also enables the compiler to instruct the machine to perform
specified operation correctly
b + C /[integer addition */
yY + Z / floating-point addition */

Expressions

* Meaningful combinations of constants, variables, operators, and function
calls

= A constant, variable, or function call itself is also an expression
*a+b
e sgqrt(7.333)
* 5.0 * x - tan(9.0/x)
= Most expressions have a value
e 1 =7;
 printf("hello, world\n");
¢ 3.777;

e a2+ b } Perfectly legal, but they are not useful

Assignment

= Assignment statement: variable = expr;

Mathematical equation Assignment expression
X +2 =0 X+ 2 =0 /[*wrong*/
X = X + 1 (meaningless) X =X+ 1

= Although they look alike, the assignment operator in C and the equal
sign in mathematics have different meaning

" In C, think of it as: variable < expr;

Basic Data lypes

(signed) char

unsigned char 1 1

(signed) short (int) 2 2

Integers unsigned short (int) 2 2
(signed) int 4 4

unsigned (int) 4 4

(signed) long (int) 4 8

unsigned long (int) il 8

Integers (signed) long long (int) 8 8
(C99) unsigned long long (int) 8 8
float 4 4
Floating-points double 8 8

long double 10/16 10/16

char (1)

= A variable of type char can be used to hold small integer values

= | byte (8 bits) in memory space
28 or 256 distinct values (signed: -128 ~ 127, unsigned: 0 ~ 255)

* Most machines use ASCII| codes to represent a character in bits

* A character encoding scheme

A character constant has its
corresponding integer value

* No particular relationship between
the value of the character constant
representing a digit and the digit's

intrinsic integer value (e.g., ' 2

ASCII Code Chart

5

9

@ 1,23, 4 6 | 7 | 8 Ay B, C ;D E|F
O|NUL | SOH |STX |ETX | EOT |ENQ | ACK |BEL| BS | HT | LF | VT | FF | CR | SO | SI
1|DLE |DC1|DC2 |DC3 |DC4 |NAK|SYN|ETB|CAN| EM |SUB|ESC| FS | GS | RS | US
2 ! n |l #| S| %S| &) () | x| + | - . /
3 0| 1]12]|3|4|5]|6]|7]|8]|9]: il < | =]>1]7
4 e | A|B|C|D|E|F|G|H|I|J|]K|L|M|N]O
5l Pl Q| R|S|T|lU|lV|Ww]|X]Y|Z]TL/|N]T1]~]._
6| - alb|lc|d|e|f|l9|h]|]i|li]Kk|1]|m]|]n|o
7l P q | r s | t|lu|lv | w]|Xx]|Y]|z { | } | ~ |DEL

1= 2)

char (2)

* Nonprinting and hard-to-print characters require an escape sequence
using \ (backslash) character

* Used to escape the usual meaning of the character that follows it

Special Characters

#include <stdio.h>

null character

int main(void)

{ alert \a 7
printf("%c", '\a'); newline \n 10
printf("\"abc\"");
printf("%cabc¥%c", : double quote \S 3

single quote \'’ 39

backslash \\ 92

char (3)

* Characters are treated as small integers

#include <stdio.h>

int main(void)

{
char ‘a'; stored in memory as 01100001 */

int 1i;

printf(" ; a is printed */
printf(" 97 is printed */
printf(" ; abc is printed */

abc...z is printed */

48 49 ... 57 is printed */

getchar() / putchar()

/* Macros defined in stdio.h */
##tinclude <stdio.h>

int getchar(void); /* reads a character from the keyboard */

int putchar(int c); /* prints a character on the screen */

* EOF (end-of-file character)
» getchar() returns EOF on end of file (or end of input by ctrl-d)

* EOF is often defined as the integer value -1

#define EOF (-1)

10

echo2.c

#include <stdio.h>

int main(void)

{

int c;
while ((getchar())

{
putchar(c);

putchar(c);
}

return 0;

upper.c

#include <stdio.h>

int main(void)

{

int c;

while ((getchar())
if (‘a’
putchar(‘A
else
putchar(c);
return 0;

1nt
= Represents integers
* Stored in 4 bytes (= 32 bits) on 32-bit or 64-bit CPUs - 232 distinct values

* Singed integers: -231 (= -2,147,483,648) ~ 231-1 (2,147,483,647)
* Unsigned integers: 0 ~ 232-1 (4,294,967,295)

" Can result in overflow during computation

#include <stdio.h>
#tdefine BIG 2000000000 /* 2 billion */

int main(void)

BIG, BIG;

13

short / long/ long long

" short: 2 bytes

" long: 4 bytes on 32-bit CPUs, 8 bytes on 64-bit CPUs

* long long: 8 bytes

= Suffixes can be appended to an integer constant to specify its type

T T T

unsigned u or
long 1l or
unsigned long ul or
long long 11 or

unsigned long long ull or

U

L
UL
LL
ULL

a
b
C
d

e

4000000024u;
20000000221 ;
4000000000ul ;
900000000011 ;
900000000001ull;

14

Octal and Hexadecimal Constants (|)

\
AN eé'\((@'oé*

= (QOctal constants M T N
* An integer constant that begins with 0 ‘1) ‘1) gggg
e 07530l & 7x8*+5x8 +3x8+0x8'+| 2 2 | 0010
3 3 0011
. 4 4 0100
» Hexadecimal constants 5 5 0101
¢ 9 ¢] ¢ b ¢] 6 6 0110
Use characters ‘0’ to ‘9’ and ‘A’ to ‘F - T 7 L
* 0x2A (or Ox2a) < 2x 16! + 10 =42 8 8 | 1000
9 9 1001
e Ox5B3 (or Ox5b3) < 5x 162+ |1 x 16! + 3 = 1459 A 10 1010
B 11 1011
, C 12 1100
= Decimal constants D 13 1101
e . E 14 1110
First digit must not be 0 (except zero) £ (10 | aniin

15

Octal and Hexadecimal Constants (2)

#include <stdio.h>

int main(void)

{
printf("
printf("
printf("
printf("
printf("
printf("
printf("
return 0;

", 19, 19, 19);
Y 1c, 1c, 1c);
", 017, 017, 017);
", 017, 017, 017);
11 11 11);
" 2097151);
", OXIFfFFf);

19 13 23 */
28 1c 34 */
15 oxf 017 */
15 oxf 017 */
37 */
Ox001fffff */
2097151 */

float / double

* |EEE Standard for Floating-Point Arithmetic (IEEE 754)

* Hold (approximated) real values
 float: 4 bytes (32 bits) +1.4x 0% ~34x10%

* double: 8 bytes (64 bits) +49 x 1032 ~ 1.8 x 10308

" Floating-point constants
* Decimal notation: 123456.7 0.0000123 1.
* Exponential notation: 1.234567e5 1234567e-1 0e@

* NOT all real numbers are representable

* Floating-point arithmetic operations differ from mathematical ones

17

Assignment Conversions

* For assignment operations, the value of the right side is converted to
the type of the left

= double = float conversion is implementation-dependent
(rounded or truncated)

= float = int causes truncation of any fractional part

» Longer integers are converted to shorter ones (e.g., int = short) by
dropping the excess high-order bits

Usual Arithmetic Conversions

= For binary operations with two operands of different types, the "lower”
type is promoted to the "higher" type before operation proceeds
* (long double,any) = (long double, long double)
(double, any) = (double, double)
(float,any) = (float, float)

Perform integral promotion: (unsigned) char, (unsigned) short = int

unsigned long int,any) = (unsigned long int,unsigned long int
Y

(long int, unsigned int) = (long int, long int) on 64-bit CPUs
(unsigned long int, unsigned long int) on 32-bit CPUs

(long int,any) = (long int, long int)
* (unsigned int,any) = (unsigned int, unsigned int)
* Otherwise, both operands have type int

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

19

Conversions: Examples

Declarations

char c; short s; int i;
unsigned u; unsigned long ul; float f;

long 1;
double d;

mw

c-s/1 2

u* 2.0 -1 double u*7-1
c +3 int f * 7 -1
c + 5.0 double 7 ¥ s ¥ ul
d + s double u > ul

"= d = 1i; Widening

long

unsigned
float
unsigned long
unsigned long

* The value of 1 is converted to a double and then assigned to d

= 1 = d; Narrowing
* Loss of information. The fraction part of d will be discarded

20

Type Casting

= Explicit conversion using (type)
= (double) 1

* Converts the value of i so that the expression has type double

* The variable 1 itself remains unchanged
Examples Wrong example

1 = (long) (‘A’+1.0);
(float) ((int) d + 1); (double) x = 77,
d = (double) 1 / 3;

—+
|

* The cast operator (type) is an unary operator
 (float) i + 3 & ((float) i) + 3

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

The sizeof Operator (1)

= sizeof(object)
* A compile-time unary operator to find the # of bytes needed to store an object
* object can be a type such as int or float, or an expression suchasa + b

#include <stdio.h>

int main(void)

{

printf("char: ! (char));

printf("short: : (short));
printf("int: ! (int));
printf("long: ! (long));
printf("float: : (float));
printf("double: : (double));

The sizeof Operator (2)

= sizeof(char) =1

= sizeof(char) < sizeof(short) < sizeof(int) < sizeof(long) <
sizeof(long long)

= sizeof(signed) = sizeof(unsigned) = sizeof(int)

= sizeof(float) < sizeof(double) < sizeof(long double)

= sizeof(object) looks like a function, but it is not. An operator.

* The type returned by the operator sizeof is typically unsigned

23

The Use of typedef

= typedef
* Allows the programmer to explicitly associate a type with an identifier
* To abbreviate long declarations
* To have type names that reflect the intended use

char
int
unsigned long

int main(void)

{

24

Example |: What's Wrong!?

#include <stdio.h>

int main(void)

{

unsigned i;

for (10;
printf("

return 0;

Example 2: What's Wrong!

#include <stdio.h>

int main(void)

{

unsigned char c;

while ((getchar()) EOF)
putchar(c);

return 0;

Example 3

#include <stdio.h>

int main()
{
int 123456789;
int 5 5
float f;
double g;

(float) n;
(double) n;
(int) f;
(int) g;
printf("nf=%d ng=
return 0;

Example 4

#include <stdio.h>

int main(void)

{
double d;

1.0 + 9.1 + 0.1 + 0.1 + 0.1
0.1 0.1 0.1 0.1
if (2.0)
printf("TRUE\n");
else
printf("FALSE\n");
return 0;

Example 5

#include <stdio.h>

#tdefine PI 3.14
##define BIG 1e20

int main(void)

{
float (PI + BIG) - BIG;
float PI (BIG - BIG);

if ()
printf("TRUE\n");
else
printf("FALSE\n");
return 0;

	슬라이드 1: Fundamental Data Types
	슬라이드 2: Declaration, Expression, Assignment
	슬라이드 3: Declarations
	슬라이드 4: Expressions
	슬라이드 5: Assignment
	슬라이드 6: Basic Data Types
	슬라이드 7: char (1)
	슬라이드 8: char (2)
	슬라이드 9: char (3)
	슬라이드 10: getchar() / putchar()
	슬라이드 11: echo2.c
	슬라이드 12: upper.c
	슬라이드 13: int
	슬라이드 14: short / long / long long
	슬라이드 15: Octal and Hexadecimal Constants (1)
	슬라이드 16: Octal and Hexadecimal Constants (2)
	슬라이드 17: float / double
	슬라이드 18: Assignment Conversions
	슬라이드 19: Usual Arithmetic Conversions
	슬라이드 20: Conversions: Examples
	슬라이드 21: Type Casting
	슬라이드 22: The sizeof Operator (1)
	슬라이드 23: The sizeof Operator (2)
	슬라이드 24: The Use of typedef
	슬라이드 25: Example 1: What's Wrong?
	슬라이드 26: Example 2: What's Wrong?
	슬라이드 27: Example 3
	슬라이드 28: Example 4
	슬라이드 29: Example 5

