
Lexical Elements &

Operators

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2023

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Syntax of the language

• Rules for putting words and punctuation to make correct statements

▪ Compiler

• A program that checks on the legality of C code

• If errors, compilers prints error messages and stops

• If NO errors, compiler translates the C code into object code

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ A sequence of characters that will be converted by C compiler to
object code

▪ Compiler first collects the characters
of the C program into tokens

▪ Six kinds of tokens
• Keywords

• Identifiers

• Constants

• String constants

• Operators

• Punctuators

#include <stdio.h>

int main(void)
{

int i, sum = 0;

for (i = 1; i <= 5; i++)
sum = sum + i;

printf("sum = %d\n", sum);
return 0;

}

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Lowercase letters

▪ Uppercase letters

▪ Digits

▪ Other characters + - * / = () { } [] < > ' "

! # % & _ | ^ ~ \ . , ; : ?

▪ White space characters blank(' '), newline('\n'), tab('\t'), etc.

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Arbitrary strings of symbols placed between /* and */

▪ The compiler changes each comment
into a single blank character

▪ Used by programmer as a
documentation aid

• How the program works

• How it is to be used

▪ Most compilers support C++
single-line comments with //

/* comment */

/** another comment **/

/*************************
* If you wish, you can *
* put commas in a box. *
* ***********************/

int sum; // This is a comment

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Reserved words

• Have a strict meaning as individual tokens in C

• Cannot be redefined or used in other contexts

auto do goto signed unsigned

break double if sizeof void

case else int static volatile

char enum long struct while

const extern register switch

continue float return typedef

default for short union

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ A token is composed of a sequence of letters, digits, and the special

character _ (underscore)

▪ A letter or underscore must be the first character of an identifier

▪ Lowercase and uppercase are distinct

k

_id

progpractice2022

SNU_cse_pp

not#m2

101_south

-plus

x.32

Examples Wrong examples

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Give unique names to objects in a program (e.g., variables, functions, ...)

▪ Keywords can be thought of as identifiers that are reserved to have

special meaning

▪ The identifier main is special

▪ Choose names that are meaningful!

▪ Identifier beginning with an underscore

• Usually used for system names (e.g., _iob)

• Please do NOT begin with an underscore!

a = b * c; tax = price * tax_rate;

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Integer constants

• Decimal representation: 0 12 100

• Binary representation: 0b0 0b1100 0b01100100

• Octal representation: 0 014 0144

• Hexadecimal representation: 0x0 0xc 0x64

• What about -12?

▪ Floating-point constants

• Decimal representation: 0.0 3.14159 -2.7

• Exponential representation: 0e0 314159e-5 -0.0027E3

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ Written between single quotes

• 'a', 'b', 'c', '!'

• Each character corresponds to

an integer (ASCII)

▪ Special character constants

• '\n', '\t', '\'', etc.

• Backslash is the escape character

("escaping the usual meaning of n")

#include <stdio.h>

int main(void)
{

char a = 'a';
char b = 98;
printf("%c %c\n", a, b);

}

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ A sequence of characters enclosed in a pair of double-quote marks

• "abc" "def"  "abcdef"

• Collected as a single token

• 'a' and "a" are NOT the same

"a string of text"

""

" "

"/* this is not a comment */"

"a string with double quotes \" within"

"a single backslash \\ is in this string"

/*"this is not a string"*/

"and

neither is this"

'nope!'

\"what about this?\"

Examples Wrong examples

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Arithmetic operators: +, -, *, /, %
• e.g., 5 % 3 has the value 2

▪ Operators can be used to separate identifiers

• a+b (or a + b) /* an expression */

• a_b /* a 3-character identifier */

▪ Some symbols have meanings that depend on context

• printf("%d", a);

• a = b % 7;

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Parentheses, braces, commas, and semicolons

▪ Operators and punctuators, along with white space, serve to separate

language elements

▪ Some special characters are used in many different contexts

• a + b

• ++a

• a += b

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ ++ and -- are unary operators, and can be applied to variables but not

to constants or expressions

++i

cnt--

777++

++(a*b–1)

Examples Wrong examples

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Difference between ++i and i++
• The expression ++i causes the stored value of i to be incremented first, then

taking as its value the new stored value of i

• The expression i++ has as its value the current value of i; then the expression

causes the stored value of i to be incremented

int a, b, c = 0;
a = ++c;
b = c++;
printf("%d %d %d\n", a, b, ++c); /* 1 1 3 printed */

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ ++ and -- cause the value of a variable in memory to be changed

(side effect)

▪ Other operators do NOT do this (e.g., a + b)

▪ All three statements are equivalent:

• ++i;

• i++;

• i = i + 1;

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Operator Associativity

() ++ (postfix) -- (postfix) Left to right

+ (unary) - (unary) ++ (prefix) -- (prefix) Right to left

* / % Left to right

+ - Left to right

= += -= *= /= %= etc. Right to left

P
re

ce
d

e
n

ce

- a * b - c

((- a) * b) - c

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Parentheses can be used to clarify or change the order in which

operators are performed

• 1 + 2 * 3  1 + (2 * 3)

• (1 + 2) * 3

▪ Binary operators + and – have the same precedence, the associativity

rule "left to right" is used

• 1 + 2 – 3 + 4 - 5  (((1 + 2) – 3) + 4) - 5

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Declarations and initializations

int a = 1, b = 2, c = 3, d = 4;

Expression Equivalent expression Value

a * b / c (a * b) / c 0

a * b % c + 1 ((a * b) % c) + 1 3

++a * b – c-- ((++a) * b) – (c--) 1

7 - - b * ++d 7 – ((- b) * (++d)) 17

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Assignment expression: variable = right_side

• = is treated as an operator

• right_side is itself expression

• The value of right_side is assigned to variable

b = 2;
c = 3;  a = (b = 2) + (c = 3);
a = b + c;

• "right to left" associativity:

a = b = c = 0;  a = (b = (c = 0));

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ variable op= expression  variable = variable op (expression)

j *= k + 3;  j = j * (k + 3); /* NOT j = j * k + 3; */

Assignment Operators

= += -= *= /= %= >>= <<= &= ^= |=

int i = 1, j = 2, k = 3, m = 4;

Expression Equivalent expression Value

i += j + k i = i + (j + k) 6

j *= k = m + 5 j = j * (k = (m + 5)) 18

	슬라이드 1: Lexical Elements & Operators
	슬라이드 2: C Compiler
	슬라이드 3: C Program
	슬라이드 4: Characters used in a C Program
	슬라이드 5: Comments
	슬라이드 6: Keywords
	슬라이드 7: Identifiers (1)
	슬라이드 8: Identifiers (2)
	슬라이드 9: Numeric Constants
	슬라이드 10: Character Constants
	슬라이드 11: String Constants
	슬라이드 12: Operators
	슬라이드 13: Punctuators
	슬라이드 14: Increment and Decrement Operators (1)
	슬라이드 15: Increment and Decrement Operators (2)
	슬라이드 16: Increment and Decrement Operators (3)
	슬라이드 17: Precedence and Associativity (1)
	슬라이드 18: Precedence and Associativity (2)
	슬라이드 19: Exercise:
	슬라이드 20: Assignment Operators (1)
	슬라이드 21: Assignment Operators (2)

