Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2023

/O

File /O

= FILE structure

* A particular structure, of which members describe the current state of a file,
defined in stdio.h

#include <stdio.h>

FILE *variable_ name; Declaration of a pointer variable to FILE
structure (or file pointer)

fopen() File open: file pointer initialization

fprintf(), fscanf(),
fputc(), fgetc(),

Output data to the file or read data from the file

fclose()

File close

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Opening and Closing a File

* File pointer declaration
e FILE *fp;

* Open afile

° -Fp = 'FOpen("'Filename", "mOde");

" Close afile
 fclose(fp);

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

File Modes

* When a mode ends with a '+' character, the file is to be opened for
both reading and writing

___Mode | Meaning

“r" Open text file for reading

"w" Open text file for writing

"a" Open text file for appending

“rb" Open binary file for reading

"wb" Open binary file for writing

"ab" Open binary file for appending

"r+" Open text file for reading and writing
"w+" Open text file for writing and reading
"a+" Open text file for appending and reading

Formatted File |/O

* Function prototypes is defined in <stdio.h>
e int fscanf(FILE *fp, const char *format, ...);
e int fprintf(FILE *fp, const char *format, ...);

##tinclude <stdio.h>

void fileio(void) {
> 5 /* file pointer declaration */

fopen("in_file", "r"); /* file open */
fopen("out_file", "w");

fscanf(, control_string, other_arguments);
fprintf(, control_string, other arguments);

fclose(); /* file close */
fclose()

Example

##tinclude <stdio.h>

void main(void)
{
0;
fopen("infile", "r");
fopen("outfile", "w");

while (fscanf(, "%d",)

J

fprintf(, "The sum is

fclose();
fclose();

1)

stdin / stdout / stderr

* Standard |/O is automatically opened at the start of program and
automatically closed at the completion of program
* stdin: standard input file (keyboard)
* stdout: standard output file (screen)
* stderr: standard error file (screen)
* No need to open and close these files

" Defined in <stdio.h>
* printf(...); is equal to fprintf(stdout, ...);
 scanf(...); isequal to fscanf(stdin, ...);
« #define getchar() getc(stdin);
e #define putchar(c) putc(c, stdout);

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Character File I/O

= Read a character from file
e ¢ = getc(fp); /* macro */
e ¢ = fgetc(fp); /* function */
 EOF is returned if the end of file indicator or the error indicator has been set

" Write a character to file
 putc(c, fp); /* macro */
 fputc(c, fp); /[* function */
* |f successful, c is returned
* Otherwise, the error indicator is set and EOF is returned

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

EOF

* End-Of-File
* Symbolic constant defined as the specific numeric value in stdio.h
* #define EOF -1

= int feof(FILE *fp);
* Checks EOF

* If the end-of-file is encountered, the end-of-file indicator is set
* feof(fp) returns non-zero value if the end-of-file indicator has been set

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example: Copying a File

#include <stdio.h> ##tinclude <stdio.h>

int main(void) int main(int , char [1)

{ {

fopen("in.txt", "r"); fopen([1], "r");
fopen("out.txt", "w"); fopen([2], "w");
while ((getc()) EOF) while ((getc()) EOF)
putc(c,)s putc(c,);
fclose(); fclose();
fclose() fclose()
return 9; return 9;

Error Handling

» int ferror(FILE *fp);

 ferror(fp); returns non-zero value if the error indicator has been set for the
file associated with fp

= void exit(int status);
* exit(); causes normal process termination

* Returns the value of status to the parent process

— 0:the program is successfully terminated
— Non-zero: the program did not execute successfully

" (cf.) return statement: causes function termination
* returninmain() =» program termination

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

11

Example: Double Spacing a File

#include <stdio.h>
#include <stdlib.h>

int main(int , char []1)
{

J

3) exit(1);
fopen([1], "r");
fopen([2], "w");
while ((getc()) EOF) {

putc(c, outfp);
if (c == "\n") pute('\n’,

}
fclose();

fclose();
exit(9); /* return 9; */

Line 1/O: fgets ()

* char *fgets(char *line, int n, FILE *fp);
* Line-oriented input function

* Reads at most (n — |) characters from the file associated with fp into the array
pointed to by 1line (buffer)

e |f a newline is read or an end of file is encountered, no additional characters are
read from the file

* "\@' is inserted automatically at the end of array
* If the end of file is encountered right at the start, returns NULL
* Otherwise, 11ne is returned

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

fgets()

* Doubling spacing a file

#include <stdio.h>

char *fgets(char *s, int n,
int c;
char

while z(getc(fp))
if (()

break;

J

return (EOF

world

world

#define MAXBUF 80

int main(void)

{

J
char [MAXBUF] ;

fopen("in.txt", "r");
while (fgets(, MAXBUF,

printf (" ")
fclose(fp);

)

Line I/O: fputs()

= int fputs(char *line, FILE *fp);
* Line-oriented output function

* Copy the null-terminated string 1ine (except null character itself) into the file
associated with fp (i.e.,appends a newline to the file)

* A successful call returns a nonnegative value; otherwise EOF

int fputs(char *s,
{

int c;

while ()

putc(c, fp);
return ferror(fp)

15

Random File I/O: fseek ()

= int fseek(FILE *fp, long offset, int whence);

Sets the file position indicator to a value that is offset bytes from whence

whence: SEEK_SET: the beginning of the file
SEEK_CUR: the current position
SEEK_END: the end of the file

* Examples:

fseek(fp, O, SEEK SET); /* the beginning of the file */

fseek(fp, ©, SEEK END); /* the end of the file */

fseek(fp, n, SEEK SET); /* the beginning position + n */

fseek(fp, n, SEEK CUR); /* the current position + n */

fseek(fp, -n, SEEK END); /* the end position — n */
If the function call is successful, the end-of-file indicator is cleared and zero is
returned

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Random File I/O: rewind() and ftell()

* void rewind(FILE *fp);
* Sets the file position indicator to the beginning of the file
* Equivalent to fseek(fp, ©, SEEK_SET);

» long ftell(FILE *fp);

* Returns the current value of the file position indicator
(the number of bytes from the beginning of the file)

 An unsuccessful call returns -1

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

17

Example:Writing a File Backwards

##tinclude <stdio.h>

void main(void) { 01 2 12

. Ll |
’ TIIIHH!II?III!EIBT

fopen("in .'tX't", "I"");
fseek(fp, ©, SEEK_END); SEEK_SET SEEK_END

int c;

if (ftell(fp) 9) {
fseek(fp, -1, SEEK CUR);
while (1) {
getc(fp);
putchar(c);
if (ftell(fp) 1) fseek(2, SEEK CUR);
else break;
}
}
fclose(fp);

Finding Top-k Words (1)

= Sample file: genesis.txt

The Firs

1:1 In t

1:2 And
upon th
:3 And
:4 And
:5 And

:6 And

:7 And

the fi
1:8 And
1:9 And

t Book of Moses: Called Genesis

he beginning God created the heaven and the earth.

the earth was without form, and void; and darkness was upon the face of the deep. And the Spirit of God moved
e face of the waters.

God said, Let there be light: and there was light.

God sawm the light, that it was good: and God divided the light from the darkness.

God called the light Day, and the darkness he called Night. And the evening and the morning were the first da

God said, Let there be a firmament in the midst of the waters, and let it divide the waters from the waters.
God made the firmament, and divided the waters which were under the firmament from the waters which were abov
rmament: and it was so.

God called the firmament Heaven. And the evening and the morning were the second day.

God said, Let the waters under the heaven be gathered together unto one place, and let the dry land appear: a

nd it was so.

1:16 And

God called the dry land Earth; and the gathering together of the waters called he Seas: and God saw that it

was good.

1:11 And
is kind,
1:12 And
d was in
1:13 And
1:14 And
be for s
1:15 And
1:16 And
e the st
1:17 And

God said, Let the earth bring forth grass, the herb yielding seed, and the fruit tree yielding fruit after h
whose seed is in itself, upon the earth: and it was so.

the earth brought forth grass, and herb yielding seed after his kind, and the tree yielding fruit, whose see
itself, after his kind: and God saw that it was good.

the evening and the morning were the third day.

God said, Let there be lights in the firmament of the heaven to divide the day from the night; and let them
igns, and for seasons, and for days, and years:

let them be for lights in the firmament of the heaven to give light upon the earth: and it was so.
God made two great lights; the greater light to rule the day, and the lesser light to rule the night: he mad
ars also.

God set them in the firmament of the heaven to give light upon the earth,

——More——(1%)

19

Finding Top-k Words (2)

/* topk.h */ #include "topk.h

int 0;

struct [NSLOTS];
struct g

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>

int main(int , char [1)

{
if (2) {
printf("Usage: filename\n", [0]);
return -1;

#tdefine NSLOTS 5000

#define DELIM " ':,.;1?()

}
init _htable();

read_words([1]);
find k(10);
return 0;

struct
char
int
struct

I

Finding Top-k Words (3)

void parse(char

void read words(char {
{ char 5

strtok(, DELIM);
while () {
if (lisdigit()) {

FILE *fp;
char [512];

}

fp = fopen(Y char ;

if (fp) {
printf("Opening

)5

failed.

exit(1l);
}

while (fgets(
parse();
fclose(fp);

, 512, fp))

J

while ('\0"') {
if (isupper(*s))
tolower(*s);
} J
if (insert_htable())

J

strtok(, DELIM);

Finding Top-k Words (4)

int insert_htable(char

{
struct ; 5 struct lookup _htable(char

lookup_htable() { t

J

return 0; /* word exists */

struct) 5

[hash()15

[hash()]1; while (p) A
malloc((struct)); if (strcmp(
-> malloc(strlen(1); return p;
strcpy(p->word,);
-> 1; ->

}

-> . return

; ’ }

return 1; /* new word */

Finding Top-k Words (5)

void sort _wc(struct

{ for (int 0; . void get wc(struct
for (int ' : {
if (wc[j-1]-> struct
swap (&wc[-1], &wc[]1); int n = 0;

}
for (int 0; NSLOTS;) {
void find_k(int k) [i];

{ while (p)
malloc((struct
);
get_wc(wc);
sort_wc(wc);
for (int 0;
printf("

[i]->

Finding Top-k Words (6)

$./topk

Usage: ./topk filename
$./topk hello

Opening hello failed.
$./topk genesis.txt
3678: and

2459: the

1366: of
653: his
652: he

612: to

600: in

598: unto

520: that
: 1

Low Level /O — System Calls

= System call

* A request for a service to an operating system’s kernel

= creat()

= open()
= close()
= read()
= write()
= lseek()

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

open()
= int open(const char *pathname, int flags);

* int open(const char *pathname, int flags, mode t mode);
* Opens the file specified by pathname
* If the specified file does not exist, it may optionally be created if O _CREAT s
specified in flags
* If successful, returns a file descriptor, a small, nonnegative integer that is used in
subsequent system calls to refer to the file

* Mandatory flags: O _RDONLY: open for reading only
O_RDONLY: open for writing only
O_RDWR: open for reading and writing

* Optional flags: O_APPEND,O_CREAT, O_TRUNC, etc.

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

creat()

» int creat(const char *pathname, mode t mode);
e Equivalent to open(pathname, O _CREAT|O WRONLY|O_TRUNC, mode);
* mode: the file mode (or permission) bits applied when a new file is created

Bit Octal mode Octal
representation | representation (owner, group, others) representation
r-- 100 04

rwW-=------ 0600
-W- 010 02 rw-r----- 0640
- =X 001 01 rwxr-xr-x 0755
rw- 110 06 PWXPWXIrwX 0777
r-X 101 05
-WX 011 03

rwx 111 07

read() and write()

» ssize t read(int fd, char *buf, int count);

= ssize t write(int fd, char *buf, int count);

* fd:file descriptor
— Non-negative integer to identify a file in an OS
— 0:standard input, |: standard output, 2: standard error

* read() attempts to read up to count bytes into the buffer starting at buf
* write() attempts to write up to count bytes from the buffer starting at buf

* After each call, the file offset is incremented by the number of bytes actually read
or written
Each call returns a count of the number of bytes transferred

NOTE: the number of bytes read or written can be less than count

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

Example: echo.c

#include <unistd.h>

##tdefine MAXBUF 80

/* copy standard input to standard output */

int main(void)

{
char [MAXBUF] ;

int n;

while ((read(9, , MAXBUF)) > 9)
write(1, , N);

Example: cp (1)

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

void main(int , char [1) {
int))) , N;
char [BUFSIZ]; /* BUFSIZ defined in stdio.h */

if (3) {
fprintf(stderr, "Usage: cp src dest\n");
exit(1);

}

if ((open([1], O RDONLY)) < 0) {

fprintf(stderr, "can't open , [1]);
exit(2);

Example: cp (2)

if ((creat([2], ©0666)) < @) {
fprintf(stderr, "can't create Y [2]);
exit(3);

}

while ((read(, BUFSIZ)) > 0) {
9;
while () o
write() 5
if (0) {
fprintf(stderr, "write failed\n");
exit(4);

1seek()

» off t 1lseek(int fd, off t offset, int whence);

* Repositions the file offset of the open file associated with fd to the argument
offset according to the directive whence as follows:
SEEK_SET: The file offset is set to offset bytes
SEEK_CUR: The file offset is set to its current location + offset bytes
SEEK_END: The file offset is set to the size of the file + offset bytes

* Returns the resulting offset location in bytes from the beginning of the file

= lseek() allows the file offset to be set beyond the end of the file

* If data is later written at this point, subsequent reads of the data in the gap (a
"hole") return null bytes

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

32

Random Accessing a File

#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<unistd.h>
<fcntl.h>
<time.h>
<sys/types.h>

int main(int , char [1) {

int , 1;
off t 5
char [1];

if (2) return -1;
if ((open([1], O _RDONLY))
return -2;
lseek(fd, @, SEEK END);
srand(time());
for (0; 10;) {
rand() 5
lseek(fd, , SEEK SET);
Pead()) 1)3
printf(" : ",
}

return 9;

0)

Summary

lfopen() lfgets() lfprintf() lfclose()

Standard C library
FILE
flags
User fileno
open() read() write() close()
Kernel File System

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

	슬라이드 1: I/O
	슬라이드 2: File I/O
	슬라이드 3: Opening and Closing a File
	슬라이드 4: File Modes
	슬라이드 5: Formatted File I/O
	슬라이드 6: Example
	슬라이드 7: stdin / stdout / stderr
	슬라이드 8: Character File I/O
	슬라이드 9: EOF
	슬라이드 10: Example: Copying a File
	슬라이드 11: Error Handling
	슬라이드 12: Example: Double Spacing a File
	슬라이드 13: Line I/O: fgets()
	슬라이드 14: fgets()
	슬라이드 15: Line I/O: fputs()
	슬라이드 16: Random File I/O: fseek()
	슬라이드 17: Random File I/O: rewind() and ftell()
	슬라이드 18: Example: Writing a File Backwards
	슬라이드 19: Finding Top-k Words (1)
	슬라이드 20: Finding Top-k Words (2)
	슬라이드 21: Finding Top-k Words (3)
	슬라이드 22: Finding Top-k Words (4)
	슬라이드 23: Finding Top-k Words (5)
	슬라이드 24: Finding Top-k Words (6)
	슬라이드 25: Low Level I/O – System Calls
	슬라이드 26: open()
	슬라이드 27: creat()
	슬라이드 28: read() and write()
	슬라이드 29: Example: echo.c
	슬라이드 30: Example: cp (1)
	슬라이드 31: Example: cp (2)
	슬라이드 32: lseek()
	슬라이드 33: Random Accessing a File
	슬라이드 34: Summary

