Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2023

Structures and Unions

Structures

= Array

* A derived type used to represent homogeneous data

= Structure

* Provides a means to aggregate variables of different types

a structure tag name

 This declaration creates the

struct derived data type struct card

int * A user-defined type

char

e Just a template, no storage
¥ allocated

Declaring Structures (1)

struct
int

i

char

struct

struct

¥

int
char

J

{

5
5
struct

J

struct
int
char
[52];

The identifier deck is declared to be an array
of struct card

struct {
float ;

float ;

When using typedef to name a structure
type, the tag name may be unimportant

Declaring Structures (2)

* |f a tag name is not supplied, then the structure type cannot be used in
later declarations

struct {
int

char

Member Access Operators

= Member access operator .
e structure_variable . member_name
e cl.pips = 3;
e cl.suit = 's';

= Member access operator ->

Access the structure members via a pointer:

pointer_to_structure->member_name
struct card *c = &cil;

c->pips = 3; <& (*c).pips = 3; £ *c.pips = 3;

Note: the operators "." and -> have the highest precedence (from left to right)
c2

" Structure assignment: c1

4190.103A: Programming Practice | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Operator Precedence & Associativity

Associativity

() [] . -> ++ (postfix) -- (postfix) Left to right
+ (unary) - (unary) ++ (prefix) -- (prefix) | & (address) * (dereference) ~ Right to left
¥/ % Left to right
+ - Left to right
<< >> Left to right
< <= > >= Left to right
== I= Left to right
& Left to right

Left to right
| Left to right

&& Left to right
| | Left to right
?: Right to left
= 4= -= F*= [= %= K= >>= &= A= = Right to left

, (comma operator) Left to right

Structure Members

" Within a given structure, member
names must be unique

= Members in different structures can
have the same name

struct
char
int

i 2

struct
char

1int

i

struct
struct

.calories
.calories

Example |

#define CLASS SIZE 100
struct {

char

int

char

class_info.h

}s

#include "class info.h"
int main(void) {
struct [CLASS SIZE];

IAI;
llHongll;
123456;

grade.c

Example | (cont'd)

grade_fail.c

#include "class _info.h"

/* Count the failing grades */
int fail(struct [1) /* int fail(struct student *class) */

9;

for (i = 0; CLASS_SIZE;)
[i]. "F'; /* cnt += (class[i].grade == 'F'); */

return

Example 2

complex.h

#include "complex.

Structure Initialization

struct {
int 5
char 5
¥

struct
{13, 'h'};

struct {
float 5
float 5

J

[31[3] = {{{1.9, -0.1}, {2.0, 0.2}, {3.0, 0.3}},

{{4.0, -0.4}, {5.0, 0.5}, {6.90, 0.6}}};
/* a[2][] is assigned zeroes */

Accessing Members of a Structure

struct student {
char *last_name;
int student_id;
char grade;
}s
struct student tmp = {"Hong", 123456, 'A' };
struct student *p = &tmp;

tmp.grade p->grade "A’
tmp.last_name p->last_name; "Hong"
(*p) .student_id tmp.student id 123456
p->last name - 1 ((p->last_name)) - 1 'G'

*(p->last_name + 2) (p->last_name)[2] 'n'

12

Using Structures with Functions (1)

" When a structure is passed as an argument to a function, it is passed by
value

* A local copy is made for use in
the body of the function

struct
* If a structure member is an array, char
- int
the array gets copied as well

iré

* Relatively inefficient!!

struct {
char I
int

struct
double

J

13

Using Structures with Functions (2)

update() void update()

{
printf("Input dept. number: "); printf("Input dept. number: "

Scan_F(n u, n); Scan_F(u ||, n);
n; -> . n;

return r; return r;

¥ ¥

int main(void) { int main(void) {

J J

update(e);

Unions (1)

" A union defines a set of alternative values that may be stored in a
shared portion of memory

* A derived type, following the same syntax as the structures
* Union members share storage

* The compiler allocates a piece of storage that can accommodate the largest of
members

int main(void)

{

##tinclude <stdio.h>

: union
union

int 5
float f;

1.9;

s printf("a.i =

15

Unions (2)

= Bijt fields

* An int or unsigned member of a structure or a union can be declared to consist of
a specified number of bits, i.e., a bit field member

* Width (# of bits) is specified by a nonnegative constant integer following a colon :

struct {
unsigned 5 5
struct { 1,
unsigned :8; 11
unsigned

unsigned
unsigned

J

16

Unions (3)

}

int main(void) {

{0};

1;
. . f;
printf(" "

: 12345678;
printf("
printf("

J

. .[1],. .

J

21,

E3]5;

Playing Poker (1)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <assert.h>

#define NPIPS 13 number of pips */

#define NCARDS 52 total number of cards */
#define NDEALS 3000 number of deals */

#define NPLAYERS 6 number of players */
#define NHANDS 5 each player got 5 cards */

enum { }

struct {

J

J

Playing Poker (2)

void init deck(

{

int

int

Playing Poker (3)

void swap(

void shuffle(
{
int i, j;
for (0; NCARDS;
{
rand() NCARDS;

swap ([i], [31);

Playing Poker (4)

void deal the cards(

{

int

for (0; NHANDS ;)

for (0; NPLAYERS;

[1]1[]] [
¥

int is_flush([])
{

int 1i;

for (1; NHANDS ;
if ([0].
return 0;
return 1;

[][NHANDS)

Playing Poker (5)

void play poker() {
int 1, 7;
int 5]

p 0;
[NPLAYERS] [NHANDS] ;

/* each player dealt 5 cards */

srand(time()); /* seed random-number generator */

for (0; NDEALS;) {
shuffle();

deal the_cards())5
for (0; NPLAYERS;) {

if (is_flu;h([51))

}
}
printf("Flush probability: / =
, (double)

J

Playing Poker (6)

int main(void)

{
[NCARDS];

init deck();
play poker();

$ gcc poker.c

$./a.out

Flush probability: 35 / 18000
$./a.out

Flush probability: 32 / 18000
$./a.out

Flush probability: 33 / 186000
$./a.out

Flush probability: 31 / 186000

0.001944

0.001778

0.001833

0.001722

Representing a Card Deck

deck

card

int main(void)

{
[NCARDS];

init _deck();
play poker();

1

2 o

3

4 o

5

13 &

I

deck

\

card

|

card *

2 o

4 &

int main(void)

5

|

[NCARDS] ;

init deck(
play poker(

)s
)5

13 &

24

Playing Poker 2 (1)

|void init deck(

1
int

J
int 0;

for (1; NPIPS;
for (;

[n] () malloc(

assert([n]);
[n]-> '
[n++]->

Playing Poker 2 (2)

void swap(

{

}

void shuffle([]1)

1
int 1, 7;
for (0; NCARDS;)
{

rand() NCARDS;

swap ([1], [31);
¥
¥

Playing Poker 2 (3)

void deal the cards([][NHANDS])
t

int 0, i, J;

for (0; NHANDS ;)
for_(K NPI AYERS

[1]1[]] ([

}

int is_flush([])
{

int 1i;

for (1; NHANDS ;
if ([0].
return 0;
return 1;

Playing Poker 2 (4)

void play_ poker([1) {

e L, .
int 0,
[NPLAYERS][NHANDS] ;

9;
/* each player dealt 5 cards */

srand(time()); /* seed random-number generator */

for (0; NDEALS;) {
shuffle();

deal the_cards())5
for (0; NPLAYERS;) {

if (is_flu;h([51))

}
}
printf("Flush probability: / =
, (double)

J

	슬라이드 1: Structures and Unions
	슬라이드 2: Structures
	슬라이드 3: Declaring Structures (1)
	슬라이드 4: Declaring Structures (2)
	슬라이드 5: Member Access Operators
	슬라이드 6: Operator Precedence & Associativity
	슬라이드 7: Structure Members
	슬라이드 8: Example 1
	슬라이드 9: Example 1 (cont'd)
	슬라이드 10: Example 2
	슬라이드 11: Structure Initialization
	슬라이드 12: Accessing Members of a Structure
	슬라이드 13: Using Structures with Functions (1)
	슬라이드 14: Using Structures with Functions (2)
	슬라이드 15: Unions (1)
	슬라이드 16: Unions (2)
	슬라이드 17: Unions (3)
	슬라이드 18: Playing Poker (1)
	슬라이드 19: Playing Poker (2)
	슬라이드 20: Playing Poker (3)
	슬라이드 21: Playing Poker (4)
	슬라이드 22: Playing Poker (5)
	슬라이드 23: Playing Poker (6)
	슬라이드 24: Representing a Card Deck
	슬라이드 25: Playing Poker 2 (1)
	슬라이드 26: Playing Poker 2 (2)
	슬라이드 27: Playing Poker 2 (3)
	슬라이드 28: Playing Poker 2 (4)

